Участник:Василий Ломакин/Критерий Уилкоксона для связных выборок

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
Строка 31: Строка 31:
'''Критерий''' (при [[уровень значимости|уровне значимости]] <tex>\alpha</tex>):
'''Критерий''' (при [[уровень значимости|уровне значимости]] <tex>\alpha</tex>):
-
Против альтернативы <tex>H_1:\; \mathbb{P} \{ x_i-y_i \} \neq 1/2</tex>:
+
Против альтернативы <tex>H_1:\; \mathbb{P} \{ x_i-y_i < 0 \} \neq 1/2</tex>:
: если <tex>R</tex> больше табличного значения критерия знаковых рангов Уилкоксона <tex>T^{+}</tex> с уровнем значимости <tex>\alpha/2</tex> и числом степеней свободы <tex>N</tex>, то нулевая гипотеза отвергается.
: если <tex>R</tex> больше табличного значения критерия знаковых рангов Уилкоксона <tex>T^{+}</tex> с уровнем значимости <tex>\alpha/2</tex> и числом степеней свободы <tex>N</tex>, то нулевая гипотеза отвергается.

Версия 21:39, 11 декабря 2009

TODO:

  1. Пример
  2. Критерий для коротких выборок
  3. Свойства и границы применимости критерия
  4. Всё ли я извлёк из обоих книг?
  5. Дополнительные предположения
  6. Ссылка на что такое связки
  7. Иллюстрации - критическая область, мощность и т.п.

Критерий Уилкоксона для связных выборок (Wilcoxon signed-rank test) — непараметрический статистический критерий, применяемый для проверки гипотезы о равенстве средних в двух зависимых выборках. Является аналогом t-критерия Стьюдента для парных наблюдений в случае закона распределения, отличного от нормального, либо для данных в нечисловой шкале.

Содержание

Пример задачи

Описание критерия

Заданы две выборки x^m = (x_1,\ldots,x_m),\; x_i \in \mathbb{R};\;\; y^n = (y_1,\ldots,y_n),\; y_i \in \mathbb{R}.

Дополнительные предположения:

  • простые выборки ????
  • выборки связные, то есть элементы x_i,\: y_i соответствуют одному и тому же объекту, но измерения сделаны в разные моменты (например, до и после обработки).

Нулевая гипотеза H_0:\; \mathbb{P} \{x_i-y_i < 0 \} = 1/2.

Статистика критерия:

  1. Рассчитать значения разностей пар двух выборок. Нулевые разности далее не учитываются. N - количество ненулевых разностей.
  2. Проранжировать модули разностей пар в возрастающем порядке.
  3. Приписать рангам знаки соответствующих им разностей.
  4. Рассчитать сумму R положительных рангов.

Критерий (при уровне значимости \alpha):

Против альтернативы H_1:\; \mathbb{P} \{ x_i-y_i < 0 \} \neq 1/2:

если R больше табличного значения критерия знаковых рангов Уилкоксона T^{+} с уровнем значимости \alpha/2 и числом степеней свободы N, то нулевая гипотеза отвергается.

Асимптотический критерий:

Рассмотрим нормированную и центрированную статистика Уилкоксона:

T = \frac{R - \frac{N(N+1)}{4}}{\sqrt{\frac{N(N+1)(2N+1)}{24}}};

T асимптотически имеет стандартное нормальное распределение при N \ge 20.

При наличии связок необходимо учесть их с помощью поправки. Выражение под корнем в знаменателе необходимо заменить на следующее:

\frac{N(N+1)(2N+1) - \frac{\sum_{j=1}^{g}{t_j(t_j-1)(t_j+1)}}{2}}{24},
где g - количество связок, t_1, \ldots, t_g - их размеры.

Другие гипотезы:

H_0:\; средняя разница между значениями пар двух выборок равна заданной константе A.

H_1:\; средняя разница не равна A.

В этом случае из каждой разности вычитается значение A, и дальнейшая обработка выполняется по описанной схеме.

Свойства и границы применимости критерия

м?

История

Данный критерий назван именем Френка Уилкоксона (1892-1965). Статья, выпущенная им в 1945 году, содержала также описание аналогичного метода для случая независимых выборок.

Литература

  1. Лапач С. Н., Чубенко А. В., Бабич П. Н. Статистика в науке и бизнесе. — Киев: Морион, 2002. — 164-166 с.
  2. Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006. — 457-458 с.

Ссылки

Личные инструменты