Участник:Василий Ломакин/Критерий Уилкоксона для связных выборок

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
Строка 1: Строка 1:
 +
{{TOCright}}
 +
 +
TODO:
TODO:
# Пример
# Пример
-
# Критерий для коротких выборок
 
-
# Свойства и границы применимости критерия
 
-
# Всё ли я извлёк из обоих книг?
 
# Дополнительные предположения
# Дополнительные предположения
# Ссылка на что такое связки
# Ссылка на что такое связки
Строка 13: Строка 13:
== Пример задачи ==
== Пример задачи ==
-
Какой-нибудь простой пример проверки на равенство средних в случае зависимых выборок
+
Первая выборка - температура пациентов до начала лечения. Вторая - температура в точности этих же пациентов после введения лекарства. Требуется выяснить, повлияло ли применение лекарства на температуру больных. Выборки '''связные''', измерены в [[Теория измерений|порядковой шкале]].
== Описание критерия ==
== Описание критерия ==
Строка 34: Строка 34:
Против альтернативы <tex>H_1:\; \mathbb{P} \{ x_i < y_i \} \neq 1/2</tex>:
Против альтернативы <tex>H_1:\; \mathbb{P} \{ x_i < y_i \} \neq 1/2</tex>:
-
: если <tex>R</tex> больше табличного значения критерия знаковых рангов Уилкоксона <tex>T^{+}</tex> с уровнем значимости <tex>\alpha/2</tex> и числом степеней свободы <tex>N</tex>, то нулевая гипотеза отвергается.
+
: если <tex>R</tex> больше табличного значения критерия знаковых рангов Уилкоксона <tex>T^{+}</tex><ref>Лапач С. Н. Статистика в науке и бизнесе. — 529 с.</ref> с уровнем значимости <tex>\alpha/2</tex> и числом степеней свободы <tex>N</tex>, то нулевая гипотеза отвергается.
'''Асимптотический критерий''':
'''Асимптотический критерий''':
Строка 46: Строка 46:
При наличии связок необходимо учесть их с помощью поправки. Выражение в знаменателе необходимо заменить на следующее:
При наличии связок необходимо учесть их с помощью поправки. Выражение в знаменателе необходимо заменить на следующее:
-
:<tex>\left{ \frac{N(N+1)(2N+1) - \frac{\sum_{j=1}^{g}{t_j(t_j-1)(t_j+1)}}{2}}{24} \right}^{1/2},</tex>
+
:<tex>\left{ \frac{N(N+1)(2N+1) - \frac{\sum_{j=1}^{g}{t_j(t_j-1)(t_j+1)}}{2}}{24} \right}^{1/2},</tex><ref>Лапач С. Н. Статистика в науке и бизнесе. — 156 с.</ref>
-
:где <tex>g</tex> - количество связок, <tex>t_1, \ldots, t_g</tex> - их размеры.
+
:где <tex>g</tex> - количество связок, <tex>t_1, \ldots, t_g</tex> - их размеры. Для элементов связок вычисляется средний ранг.
'''Другие гипотезы''':
'''Другие гипотезы''':
Строка 58: Строка 58:
В этом случае из каждой разности вычитается значение A, и дальнейшая обработка выполняется по описанной схеме.
В этом случае из каждой разности вычитается значение A, и дальнейшая обработка выполняется по описанной схеме.
-
== Свойства и границы применимости критерия ==
+
== Применение критерия ==
-
м?
+
Метод часто используется для сравнения показателей выборки до и после эксперимента, в частности для проверки гипотезы о равенстве медиан в двух зависимых выборках. Вообще говоря, можно строить примеры, когда медианы выборок различны, а гипотеза H_0 верна, поэтому применять критерий для проверки такой гипотезы следует с осторожностью. Аналогичными недостатками (в своей области применения) обладают [[Критерий Уилкоксона двухвыборочный|двухвыборочный критерий Вилкоксона]] и [[Критерий_Уилкоксона-Манна-Уитни|U-критерий Манна-Уитни]].<ref>Орлов А. И. Эконометрика. — §4.5.</ref>
 +
 
 +
Критерий является аналогом [[Критерий Стьюдента|t-критерия Стьюдента для связанных выборок]] в случае распределения, отличного от нормального, либо данных, измеренных в количественной шкале. К нормально распределённым совокупностям следует применять более мощный t-критерий.
== История ==
== История ==
Строка 70: Строка 72:
# ''Лапач С. Н., Чубенко А. В., Бабич П. Н.'' Статистика в науке и бизнесе. — Киев: Морион, 2002. — 164-166 с.
# ''Лапач С. Н., Чубенко А. В., Бабич П. Н.'' Статистика в науке и бизнесе. — Киев: Морион, 2002. — 164-166 с.
# ''Кобзарь А. И.'' Прикладная математическая статистика. — М.: Физматлит, 2006. — 457-458 с.
# ''Кобзарь А. И.'' Прикладная математическая статистика. — М.: Физматлит, 2006. — 457-458 с.
 +
# ''Орлов А. И.'' Эконометрика. — М.: Экзамен, 2003. — §4.5.
 +
# ''Лагутин М. Б.'' Наглядная математическая статистика. В двух томах. — М.: П-центр, 2003. — 222-227 с.
== Ссылки ==
== Ссылки ==
* [[Проверка статистических гипотез]] — о методологии проверки статистических гипотез.
* [[Проверка статистических гипотез]] — о методологии проверки статистических гипотез.
-
* [[Критерий Уилкоксона-Манна-Уитни]]
+
* [[Критерий Уилкоксона двухвыборочный]]
* [http://en.wikipedia.org/wiki/Wilcoxon_signed-rank_test Wilcoxon signed-rank test] (Wikipedia).
* [http://en.wikipedia.org/wiki/Wilcoxon_signed-rank_test Wilcoxon signed-rank test] (Wikipedia).

Версия 21:51, 24 декабря 2009

Содержание


TODO:

  1. Пример
  2. Дополнительные предположения
  3. Ссылка на что такое связки
  4. Иллюстрации - критическая область, мощность и т.п.
  5. Вычисление рангов для связок

Критерий Уилкоксона (Вилкоксона) для связных выборок (Wilcoxon signed-rank test) — непараметрический статистический критерий, применяемый для оценки различий между двумя зависимыми выборками, взятыми из закона распределения, отличного от нормального, либо измеренными с использованием порядковой шкалы. Критерий является ранговым, поэтому он инвариантен по отношению к любому монотонному преобразованию шкалы измерения.

Пример задачи

Первая выборка - температура пациентов до начала лечения. Вторая - температура в точности этих же пациентов после введения лекарства. Требуется выяснить, повлияло ли применение лекарства на температуру больных. Выборки связные, измерены в порядковой шкале.

Описание критерия

Заданы две выборки x^m = (x_1,\ldots,x_m),\; x_i \in \mathbb{R};\;\; y^n = (y_1,\ldots,y_n),\; y_i \in \mathbb{R}.

Дополнительные предположения:

  • Обе выборки простые.
  • Выборки связные, то есть элементы x_i,\: y_i соответствуют одному и тому же объекту, но измерения сделаны в разные моменты (например, до и после обработки).

Нулевая гипотеза H_0:\; \mathbb{P} \{x_i < y_i \} = 1/2.

Вычисление статистики критерия:

  1. Рассчитать значения разностей пар двух выборок. Нулевые разности далее не учитываются. N - количество ненулевых разностей.
  2. Проранжировать модули разностей пар в возрастающем порядке.
  3. Приписать рангам знаки соответствующих им разностей.
  4. Рассчитать сумму R положительных рангов.

Критерий (при уровне значимости \alpha):

Против альтернативы H_1:\; \mathbb{P} \{ x_i < y_i \} \neq 1/2:

если R больше табличного значения критерия знаковых рангов Уилкоксона T^{+}[1] с уровнем значимости \alpha/2 и числом степеней свободы N, то нулевая гипотеза отвергается.

Асимптотический критерий:

Рассмотрим нормированную и центрированную статистика Уилкоксона:

\tilde T = \frac{R - \frac{N(N+1)}{4}}{\sqrt{\frac{N(N+1)(2N+1)}{24}}};

\tilde T асимптотически имеет стандартное нормальное распределение. Аппроксимация начинает работать при N \ge 20.

При наличии связок необходимо учесть их с помощью поправки. Выражение в знаменателе необходимо заменить на следующее:

\left{ \frac{N(N+1)(2N+1) - \frac{\sum_{j=1}^{g}{t_j(t_j-1)(t_j+1)}}{2}}{24} \right}^{1/2},[2]
где g - количество связок, t_1, \ldots, t_g - их размеры. Для элементов связок вычисляется средний ранг.

Другие гипотезы:

H_0:\; средняя разница между значениями пар двух выборок равна заданной константе A.

H_1:\; средняя разница не равна A.

В этом случае из каждой разности вычитается значение A, и дальнейшая обработка выполняется по описанной схеме.

Применение критерия

Метод часто используется для сравнения показателей выборки до и после эксперимента, в частности для проверки гипотезы о равенстве медиан в двух зависимых выборках. Вообще говоря, можно строить примеры, когда медианы выборок различны, а гипотеза H_0 верна, поэтому применять критерий для проверки такой гипотезы следует с осторожностью. Аналогичными недостатками (в своей области применения) обладают двухвыборочный критерий Вилкоксона и U-критерий Манна-Уитни.[3]

Критерий является аналогом t-критерия Стьюдента для связанных выборок в случае распределения, отличного от нормального, либо данных, измеренных в количественной шкале. К нормально распределённым совокупностям следует применять более мощный t-критерий.

История

Данный критерий назван именем Френка Уилкоксона (1892-1965). Статья, выпущенная им в 1945 году, содержала также описание аналогичного метода для случая независимых выборок.

Примечания

  1. Лапач С. Н. Статистика в науке и бизнесе. — 529 с.
  2. Лапач С. Н. Статистика в науке и бизнесе. — 156 с.
  3. Орлов А. И. Эконометрика. — §4.5.

Литература

  1. Лапач С. Н., Чубенко А. В., Бабич П. Н. Статистика в науке и бизнесе. — Киев: Морион, 2002. — 164-166 с.
  2. Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006. — 457-458 с.
  3. Орлов А. И. Эконометрика. — М.: Экзамен, 2003. — §4.5.
  4. Лагутин М. Б. Наглядная математическая статистика. В двух томах. — М.: П-центр, 2003. — 222-227 с.

Ссылки

Личные инструменты