Вероятностные тематические модели (курс лекций, К.В.Воронцов)

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Аддитивная регуляризация тематических моделей)
Текущая версия (20:04, 21 октября 2025) (править) (отменить)
(Тематический информационный поиск)
 
(300 промежуточных версий не показаны.)
Строка 1: Строка 1:
{{TOCright}}
{{TOCright}}
-
Спецкурс читается студентам 2—5 курсов на кафедре «[[Математические методы прогнозирования (кафедра ВМиК МГУ)|Математические методы прогнозирования]]» [[ВМиК]] [[МГУ]] с 2013 года.
+
Спецкурс читается студентам 2—5 курсов на кафедре «[[Математические методы прогнозирования (кафедра ВМиК МГУ)|Математические методы прогнозирования]]» [[ВМиК]] [[МГУ]] с 2013 года и студентам 6 курса на кафедре «[[Интеллектуальные системы (кафедра МФТИ)|Интеллектуальные системы]]» [[ФУПМ]] [[МФТИ]] с 2019 года.
-
В спецкурсе изучается вероятностное тематическое моделирование (topic modeling) коллекций текстовых документов. Развивается многокритериальный подход к решению некорректно поставленной задачи стохастического матричного разложения — [[аддитивная регуляризация тематических моделей]]. Рассматриваются свойства интерпретируемости, устойчивости и полноты тематических моделей, а также способы их измерения. Рассматриваются прикладные задачи классификации и категоризации текстов, информационного поиска, персонализации и рекомендательных систем. Рассматриваются задачи анализа и классификации символьных последовательностей неязыковой природы, в частности, аминокислотных и нуклеотидных последовательностей, дискретизированных биомедицинских сигналов. Предполагается проведение студентами численных экспериментов на модельных и реальных данных.
+
В спецкурсе изучается вероятностное [[тематическое моделирование]] (topic modeling) коллекций текстовых документов. Тематическая модель определяет, какие темы содержатся в большой текстовой коллекции, и к каким темам относится каждый документ. Тематические модели позволяют искать тексты по смыслу, а не по ключевым словам, и создавать информационно-поисковые системы нового поколения, основанные на парадигме семантического разведочного поиска (exploratory search). Рассматриваются тематические модели для классификации, категоризации, сегментации, суммаризации текстов естественного языка, а также для рекомендательных систем, анализа банковских транзакционных данных, анализа биомедицинских сигналов. В спецкурсе развивается многокритериальный подход к построению моделей с заданными свойствами — [[аддитивная регуляризация тематических моделей]] (АРТМ). Он основан на регуляризации некорректно поставленных задач стохастического матричного разложения. Особое внимание уделяется методам лингвистической регуляризации для моделирования связности текста. Предполагается проведение студентами численных экспериментов на модельных и реальных данных с помощью библиотеки тематического моделирования [[BigARTM]].
От студентов требуются знания курсов линейной алгебры, математического анализа, теории вероятностей. Знание математической статистики, методов оптимизации, машинного обучения, языков программирования Python и С++ желательно, но не обязательно.
От студентов требуются знания курсов линейной алгебры, математического анализа, теории вероятностей. Знание математической статистики, методов оптимизации, машинного обучения, языков программирования Python и С++ желательно, но не обязательно.
-
Условием сдачи спецкурса является выполнение индивидуальных практических заданий.
+
Краткая ссылка на эту страницу: [http://bit.ly/2EGWcjA bit.ly/2EGWcjA].
-
== Программа курса 2016 ==
+
'''Основной материал:'''
-
* Файл с описанием заданий: [[Media:voron-2016-task-PTM.pdf|voron-2016-task-PTM.pdf]]
+
* ''Воронцов К. В.'' [[Media:voron17survey-artm.pdf|Вероятностное тематическое моделирование: теория регуляризации ARTM и библиотека с открытым кодом BigARTM]]. {{важно|— обновление 29.12.2024}}.
 +
* [https://www.youtube.com/playlist?list=PLk4h7dmY2eYE_JjvexGUS5MSozoxDFovp Видеозаписи, 2023 осень (МФТИ)].
-
=== Введение ===
+
= Программа курса =
-
Презентация: [[Media:Voron-PTM-1.pdf|(PDF, 0,6 МБ)]] {{важно|— обновление 27.02.2016}}.
+
-
* Понятие «темы», цели и задачи тематического моделирования. Основные предположения. Гипотеза «мешка слов». Методы предварительной обработки текстов.
+
-
* Вероятностное пространство. Тема как латентная (ненаблюдаемая) переменная. Гипотеза условной независимости. [[Порождающая модель]] документа как вероятностной смеси тем.
+
-
* Постановка обратной задачи восстановления параметров модели по данным.
+
-
* [[Вероятностный латентный семантический анализ]] (PLSA).
+
-
* [[Метод наибольшего правдоподобия|Принцип максимума правдоподобия]], [[Условия Каруша–Куна–Таккера]]. Униграммные модели коллекции и документа.
+
-
* Теорема о необходимых условиях максимума правдоподобия для модели PLSA.
+
-
* ЕМ-алгоритм и его элементарная интерпретация. Формула Байеса и частотные оценки условных вероятностей.
+
-
* Рациональный ЕМ-алгоритм (встраивание Е-шага внутрь М-шага).
+
-
=== Обзор задач и моделей ===
+
== Задача тематического моделирования ==
-
Презентация: [[Media:Voron-PTM-2.pdf|(PDF, 8,3 МБ)]] {{важно|— обновление 27.02.2016}}.
+
Презентация: [[Media:Voron25ptm-intro.pdf|(PDF, 1,7 МБ)]] {{важно|— обновление 11.09.2025}}.
-
* Разновидности тематических моделей.
+
[https://youtu.be/DU0AQUNW3YI?list=PLk4h7dmY2eYEnsGW3GIMvIhxPeifcQvQt старая видеозапись]
-
* Средства визуализации тематических моделей.
+
-
* Разведочный информационный поиск и требования к тематическим моделям.
+
-
* Задача поиска релевантных тем в социальных сетях.
+
-
* Применение тематического моделирования для [[Технология информационного анализа электрокардиосигналов|информационного анализа электрокардиосигналов]].
+
-
* Динамическая модель коллекции пресс-релизов.
+
-
* Проект [[BigARTM]].
+
-
* Открытые проблемы и направления исследований.
+
-
=== Аддитивная регуляризация тематических моделей ===
+
'''Цели и задачи тематического моделирования.'''
-
Презентация: [[Media:Voron-PTM-3.pdf|(PDF, Х,Х МБ)]] {{важно|— обновление ХХ.ХХ.2016}}.
+
* Понятие «темы», цели и задачи [[тематическое моделирование|тематического моделирования]].
 +
* Вероятностная модель порождения текста.
 +
* [[EM-алгоритм]] и его элементарная интерпретация. Формула Байеса и частотные оценки условных вероятностей.
 +
* [[Метод наибольшего правдоподобия|Принцип максимума правдоподобия]].
-
* Задача тематического моделирования как некорректно поставленная задача стохастического матричного разложения.
+
'''Аддитивная регуляризация тематических моделей.'''
-
* [[Латентное размещение Дирихле]] (LDA). Некоторые свойства [[Распределение Дирихле|распределения Дирихле]].
+
* Понятие некорректно поставленной задачи по Адамару. Регуляризация.
-
* Теорема о необходимом условии максимума апостериорной вероятности для LDA.
+
* Лемма о максимизации на единичных симплексах. [[Условия Каруша–Куна–Таккера]].
-
* Эксперименты на синтетических данных: демонстрация неустойчивости PLSA и LDA.
+
* Теорема о необходимом условии максимума регуляризованного правдоподобия для ARTM.
-
* Эксперименты по устойчивости на реальных текстовых коллекциях.
+
* Классические тематические модели [[Вероятностный латентный семантический анализ|PLSA]] и [[Латентное размещение Дирихле|LDA]] как частные случаи ARTM.
-
* [[Аддитивная регуляризация тематических моделей]].
+
-
* Теорема о необходимом условии максимума регуляризованного правдоподобия для ARTM.
+
-
* [[Дивергенция Кульбака-Лейблера]]. Регуляризаторы сглаживания и разреживания.
+
-
* Сравнение LDA и PLSA. Экспериментальные факты: LDA скорее улучшает оценки редких слов, чем снижает переобучение.
+
-
=== Регуляризаторы для улучшения интерпретируемости тем ===
+
'''Практика тематического моделирования.'''
-
Презентация: [[Media:Voron-PTM-4.pdf|(PDF, Х,Х МБ)]] {{важно|— обновление ХХ.ХХ.2016}}.
+
* Проект с открытым кодом BigARTM.
-
* Разреживание предметных тем и сглаживание фоновых тем. Автоматическое выделение стоп-слов.
+
* Этапы решения практических задач.
-
* Частичное обучение как разновидность сглаживания.
+
* Методы предварительной обработки текста.
-
* Сфокусированные тематические модели. Использование словаря для выделения предметных тем. Примеры: выделение тематики эпидемий, межэтнических отношений.
+
* Датасеты и практические задания по курсу.
-
* Регуляризатор декоррелирования тем.
+
-
* Регуляризатор когерентности тем.
+
-
* Регуляризатор отбора тем.
+
 +
== Моделирование локального контекста ==
 +
Презентация: [[Media:Voron25ptm-local.pdf|(PDF, 3,2 МБ)]] {{важно|— обновление 14.09.2025}}.
 +
[https://youtu.be/Xe36kQPlbHY?list=PLk4h7dmY2eYEnsGW3GIMvIhxPeifcQvQt старая видеозапись]
-
== Программа курса 2015 ==
+
'''Онлайновый ЕМ-алгоритм.'''
-
* Файл с описанием заданий: [[Media:voron-2014-task-PTM.pdf|voron-2015-task-PTM.pdf]]
+
* Рациональный ЕМ-алгоритм (встраивание Е-шага внутрь М-шага).
 +
* Онлайновый EM-алгоритм для ARTM.
 +
* Пакетный онлайновый регуляризованный EM-алгоритм для ARTM.
-
=== Задачи анализа текстов и вероятностные модели ===
+
'''Линейная тематизация текста.'''
 +
* Линейная тематизация текста за один проход без матрицы <tex>\Theta</tex>.
 +
* Локализация E-шага. Линейная тематизация. Коэффициенты внимания. Attentive ARTM.
 +
* Двунаправленная тематическая модель контекста.
 +
* Онлайновый EM-алгоритм с однопроходным локализованным E-шагом.
-
'''Задачи классификации текстов.'''
+
'''Аналогия с нейросетевыми моделями языка.'''
-
* Коллекция текстовых документов. Векторное представление документа.
+
* Свёрточная нейросеть GCNN (Gated Convolutional Network)
-
* Эмпирические законы Ципфа, Ципфа-Мандельброта, Хипса.
+
* Модель само-внимания (self-attention) Query-Key-Value.
-
* Постановка задачи классификации текстов. Объекты, признаки, классы, обучающая выборка.
+
* Трансформер и онлайновый EM-алгоритм с многопроходным локализованным E-шагом.
-
* Линейный классификатор. Наивный байесовский классификатор.
+
* Нейросетевая тематическая модель Contextual-Top2Vec.
-
* Задача распознавания языка текста.
+
-
* Задача распознавание жанра текста. Распознавание научных текстов. Примеры признаков.
+
-
* Задача категоризации текстов, сведение к последовательности задач классификации.
+
-
* Задача анализа тональности.
+
-
'''Задачи предварительной обработки текстов.'''
+
== Реализация ЕМ-алгоритма и комбинирование регуляризаторов ==
-
* Очистка: удаление номеров страниц (колонтитулов), переносов, опечаток, оглавлений, таблиц, рисунков, нетекстовой информации.
+
Презентация: [[Media:Voron25ptm-regular.pdf|(PDF,&nbsp;1,4&nbsp;МБ)]] {{важно|— обновление 2.10.2025}}.
-
* Лемматизация и стемминг. Сравнение готовых инструментальных средств.
+
[https://youtu.be/mUMfoBlslQE?list=PLk4h7dmY2eYEnsGW3GIMvIhxPeifcQvQt старая видеозапись]
-
* Выделение и удаление стоп-слов и редких слов.
+
-
'''Задачи информационного поиска.'''
+
'''Часто используемые регуляризаторы.'''
-
* Задача поиска документов по запросу. Инвертированный индекс.
+
* Сглаживание и разреживание.
-
* Меры сходства векторов частот. Косинусная мера сходства. Расстояние Хеллингера.
+
* Частичное обучение.
-
* Дивергенция Кульбака-Леблера и её свойства. Дивергенция Кресси-Рида.
+
* Декоррелирование тем.
-
* Критерий текстовой релевантности TF-IDF. Вероятностная модель и вывод формулы TF-IDF.
+
* Разреживание для отбора тем.
-
* Задача ранжирования. Примеры признаков. Формирование асессорских обучающих выборок.
+
-
'''Униграммная модель документов и коллекции.'''
+
'''Особенности реализации ЕМ-алгоритма для ARTM.'''
-
* Вероятностное пространство. Гипотезы «мешка слов» и «мешка документов». Текст как простая выборка, порождаемая вероятностным распределением. Векторное представление документа как эмпирическое распределение.
+
* Улучшение сходимости несмещёнными оценками.
-
* Понятие параметрической порождающей модели. Принцип максимума правдоподобия.
+
* Замена логарифма в функции потерь.
-
* Униграммная модель документов и коллекции.
+
* Матричная запись ЕМ-алгоритма.
-
* ''Ликбез.'' Теорема Куна-Таккера.
+
* Подбор коэффициентов регуляризации. Траектория регуляризации.
-
* Аналитическое решение задачи о стационарной точке функции Лагранжа. Частотные оценки условных вероятностей.
+
* Относительные коэффициенты регуляризации.
 +
* Библиотеки BigARTM и TopicNet.
-
'''Литература:''' [Маннинг 2011].
+
'''Эксперименты с регуляризацией.'''
 +
* Производительность BigARTM
 +
* Оценивание качества: перплексия, когерентность, лексическое ядро
 +
* Регуляризаторы сглаживания, разреживания, декоррелирования и отбора тем.
 +
* Комбинирование регуляризаторов, эмпирические рекомендации.
 +
* Эксперименты с отбором тем на синтетических и реальных данных.
 +
* Сравнение с байесовской моделью HDP (Hierarchical Dirichlet Process).
 +
* Эффект отбрасывания малых, дублирующих и линейно зависимых тем.
-
=== Вероятностный латентный семантический анализ ===
+
== Оценивание качества тематических моделей ==
-
* ''Напоминания.'' Коллекция текстовых документов. Векторное представление документа. Задачи информационного поиска и классификации текстов.
+
Презентация: [[Media:Voron25ptm-quality.pdf|(PDF,&nbsp;1,7&nbsp;МБ)]] {{важно|— обновление 2.10.2025}}.
 +
[https://youtu.be/OoIetK1pTUA?list=PLk4h7dmY2eYEnsGW3GIMvIhxPeifcQvQt старая видеозапись]
-
'''Мотивации вероятностного тематического моделирования
+
'''Измерение качества тематических моделей.'''
-
* Идея понижения размерности: переход от вектора (терминов) к вектору тем.
+
* Правдоподобие и перплексия.
-
* Цели тематического моделирования: разведочный поиск научной информации, навигация и систематизация, агрегирование новостных потоков, классификация и категоризация текстов, обход проблем синонимии и омонимии.
+
* Интерпретируемость и когерентность. Внутритекстовая когерентность.
 +
* Разреженность и различность.
-
'''Задача тематического моделирования.'''
+
'''Проверка гипотезы условной независимости.'''
-
* Вероятностное пространство. Тема как латентная (ненаблюдаемая) переменная. Гипотеза условной независимости. Порождающая модель документа как вероятностной смеси тем.
+
* Статистики на основе KL-дивергенции и их обобщения.
-
* Постановка обратной задачи восстановления параметров модели по данным.
+
* Регуляризатор семантической однородности.
 +
* Применение статистических тестов условной независимости.
-
'''Вероятностный латентный семантический анализ (PLSA).'''
+
'''Проблема тематической несбалансированности в данных'''
-
* Принцип максимума правдоподобия, аналитическое решение задачи о стационарной точке функции Лагранжа, формулы M-шага.
+
* Проблема малых тем и тем-дубликатов
-
* Элементарная интерпретация ЕМ-алгоритма: Е-шаг как формула Байеса для апостериорной вероятности темы, М-шаг как частотные оценки условных вероятностей.
+
* Тематическая несбалансированность как основная причина неинтерпретируемости тем
-
* Рациональный ЕМ-алгоритм (встраивание Е-шага внутрь М-шага).
+
* Эксперименты с регуляризаторами отбора тем и декоррелирования
 +
* Регуляризатор семантической однородности
 +
* Подходы к балансировке тем
-
'''Онлайновый ЕМ-алгоритм (OEM).'''
+
== Тематический информационный поиск ==
-
* Проблема больших данных.
+
Презентация: [[Media:Voron25ptm-exp.pdf|(PDF,&nbsp;9,4&nbsp;МБ)]] {{важно|— обновление 21.10.2025}}.
-
* Эвристика разделения М-шага.
+
[https://youtu.be/2SkbbDYcBUQ?list=PLk4h7dmY2eYEnsGW3GIMvIhxPeifcQvQt старая видеозапись]
-
* Эвристика разделения коллекции на пачки документов.
+
-
* Добавление новых документов (folding-in).
+
-
'''Проведение экспериментов на модельных данных.'''
+
'''Мультимодальные тематические модели.'''
-
* Процесс порождения терминов в документе. Генератор модельных (синтетических) данных. Генерация случайной величины из заданного дискретного распределения.
+
* Примеры модальностей.
-
* Распределение Дирихле. Генерация разреженных и сглаженных векторов дискретных распределений из распределения Дирихле.
+
* Мультимодальный ARTM и регуляризованный ЕМ-алгоритм.
-
* Оценивание точности восстановления модельных данных. Расстояние между дискретными распределениями. Проблема перестановки тем, венгерский алгоритм.
+
-
* Проблема неединственности и неустойчивости матричного разложения. Экспериментальное оценивание устойчивости решения.
+
-
'''Задание 1.1'''
+
'''Иерархические тематические модели.'''
-
Обязательные пункты: 1–3 и любой из последующих.
+
* Иерархии тем. Послойное построение иерархии.
-
# Реализовать генератор модельных данных. Реализовать вычисление эмпирических распределений терминов тем и тем документов.
+
* Регуляризаторы для разделения тем на подтемы.
-
# Реализовать оценку точности восстановления с учётом перестановки тем. Вычислить оценку точности для исходных модельных распределений.
+
* Псевдодокументы родительских тем.
-
# Реализовать рациональный ЕМ-алгоритм.
+
* Модальность родительских тем.
-
# Исследовать зависимости точности модели и точности восстановления от числа итераций и от числа тем в модели (при фиксированном числе тем в исходных данных). Что происходит, когда тем больше, чем нужно? Меньше, чем нужно?
+
-
# Исследовать влияние случайного начального приближения на устойчивость решения. Построить эмпирические распределения и доверительные интервалы для расстояний Хеллингера между истинными матрицами и восстановленными.
+
-
# Исследовать влияние разреженности матриц Фи и Тета на устойчивость решения.
+
-
# Исследовать полноту решения. Сколько запусков со случайным начальным приближением необходимо сделать, чтобы найти все исходные темы? Как различность и разреженность исходных тем влияет на полноту?
+
-
'''Литература:''' [Hofmann 1999].
+
'''Эксперименты с тематическим поиском.'''
 +
* Методика измерения качества поиска.
 +
* Тематическая модель для документного поиска.
 +
* Оптимизация гиперпараметров.
 +
<!--
 +
'''Задачи тематизации текстовых коллекций'''
 +
* Проект «Мастерская знаний». Тематизация подборок научных публикаций.
 +
* Поиск этно-релевантных тем в социальных сетях
 +
* Тематизация в социо-гуманитарных исследованиях-->
-
===Латентное размещение Дирихле===
+
== BigARTM и базовые инструменты ==
-
* ''Напоминания.'' Задача тематического моделирования коллекции текстовых документов. Модель PLSA, формулы Е-шага и М-шага.
+
''Мурат Апишев''.
 +
Презентация: [[Media:Base_instruments.zip‎|(zip,&nbsp;0,6&nbsp;МБ)]] {{важно|— обновление 17.02.2017}}.
 +
[https://youtu.be/AIN00vWOJGw Видеозапись]
-
'''Латентное размещение Дирихле (LDA)'''
+
'''Предварительная обработка текстов'''
-
* Свойства [[Распределение Дирихле|распределения Дирихле]].
+
* Парсинг «сырых» данных.
-
* Принцип максимума апостериорной вероятности. Модифицированные формулы М-шага.
+
* Токенизация, стемминг и лемматизация.
-
* [[Байесовский вывод]]. Свойство сопряжённости мультиномиального распределения и распределения Дирихле. Другие модифицированные формулы М-шага.
+
* Выделение энграмм.
-
* Обзор модификаций формул М-шага.
+
* Законы Ципфа и Хипса. Фильтрация словаря коллекции. Удаление стоп-слов.
-
* Методы оптимизации гиперпараметров.
+
-
* Небайесовская интерпретация модели LDA.
+
-
* Сравнение LDA и PLSA. Экспериментальные факты: LDA скорее улучшает оценки редких слов, чем снижает переобучение.
+
-
'''Стохастический ЕМ-алгоритм (SEM).'''
+
'''Библиотека BigARTM'''
-
* Гипотеза разреженности апоcтериорного распределения тем p(t|d,w).
+
* Методологические рекоммендации по проведению экспериментов.
-
* Эвристика сэмплирования. Алгоритм сэмплирования Гиббса.
+
* Установка [[BigARTM]].
 +
* Формат и импорт входных данных.
 +
* Обучение простой модели (без регуляризации): создание, инициализация, настройка и оценивание модели.
 +
* Инструмент визуализации тематических моделей VisARTM. Основные возможности, демонстрация работы.
-
'''Робастные тематические модели.'''
+
'''Дополнительный материал:'''
-
* Робастная модель с фоном и шумом.
+
* Презентация: [[Media:VoronApishev17ptm5.pdf|(PDF,&nbsp;1,5&nbsp;МБ)]] {{важно|— обновление 17.03.2017}}.
-
* Упрощённая робастная модель.
+
* [https://www.youtube.com/watch?v=2LEQuLRxaIY&t=1s '''Видео'''] {{важно|— обновление 22.03.2017}}.
-
* Почему робастный PLSA лучше, чем LDA. Эффект повышения правдоподобия (перплексии) в робастных моделях с шумом.
+
* Воркшоп по BigARTM на DataFest'4. [https://www.youtube.com/watch?v=oQcHEm2-7PM '''Видео'''].
-
'''Способы формирования начальных приближений.'''
+
== Мультимодальные тематические модели ==
-
* Случайная инициализация.
+
Презентация: [[Media:Voron25ptm-modal.pdf|(PDF,&nbsp;1,8&nbsp;МБ)]] {{важно|— обновление 21.10.2025}}.
-
* Инициализация по документам.
+
[https://youtu.be/AfwH0A3NJCQ?list=PLk4h7dmY2eYE_JjvexGUS5MSozoxDFovp старая видеозапись]
-
* Контекстная документная кластеризация.
+
-
* Поиск якорных слов. Алгоритм Ароры.
+
-
'''Задание 1.2'''
+
'''Мультиязычные тематические модели.'''
-
Обязательные пункты: 1 и любой из последующих.
+
* Параллельные и сравнимые коллекции.
-
# Реализовать онлайновый алгоритм OEM.
+
* Регуляризаторы для учёта двуязычных словарей.
-
# Исследовать влияние размера первой пачки и последующих пачек на качество модели.
+
* Кросс-язычный информационный поиск.
-
# Исследовать влияние выбора числа итераций на внутреннем и внешнем циклах алгоритма OEM на качество и скорость построения модели.
+
-
# Исследовать возможность улучшения качества модели с помощью второго прохода по коллекции (без инициализации p(w|t)).
+
-
# Исследовать влияние гиперпараметров на правдоподобие модели и точность восстановления.
+
-
'''Литература:''' [Hoffman 2010], [Asuncion 2009].
+
'''Трёхматричные модели.'''
 +
* Модели трёхматричных разложений. Понятие порождающей модальности.
 +
* Автор-тематическая модель (author-topic model).
 +
* Модель для выделения поведений объектов в видеопотоке.
-
===Аддитивная регуляризация тематических моделей===
+
'''Тематические модели транзакционных данных.'''
-
* ''Напоминания''. Вероятностная тематическая модель. Принцип максимума правдоподобия. PLSA. EM-алгоритм.
+
* Примеры транзакционных данных в рекомендательных системах, социальных и рекламных сетях.
 +
* Гиперграфовая модель ARTM. Теорема о необходимом условии максимума регуляризованного правдоподобия.
 +
* Транзакционные данные в рекомендательных системах. Симметризованная гиперграфовая модель ARTM.
 +
* Гиперграфовые тематические модели языка. Тематическая модель предложений и сегментоидов.
 +
* Анализ транзакционных данных для выявления паттернов экономического поведения клиентов банка. '''[https://youtu.be/0q5p7xP4cdA?t=15168 Видео]'''.
 +
* Анализ банковских транзакционных данных для выявления видов деятельности компаний.
-
'''Многокритериальная регуляризация.'''
+
== Анализ зависимостей ==
-
* Некорректность постановки задачи тематического моделирования.
+
Презентация: [[Media:Voron24ptm-rel.pdf|(PDF,&nbsp;2,5&nbsp;МБ)]] {{важно|— обновление 14.04.2025}}.
-
* [[Аддитивная регуляризация тематических моделей]].
+
[https://youtu.be/uKCMr9yK3gw?list=PLk4h7dmY2eYE_JjvexGUS5MSozoxDFovp старая видеозапись]
-
* Вывод формулы M-шага для регуляризованного ЕМ-алгоритма.
+
-
* Проект [[BigARTM]].
+
-
'''Регуляризаторы сглаживания и разреживания.'''
+
'''Зависимости, корреляции, связи.'''
-
* Максимизация и минимизация KL-дивергенции.
+
* Тематические модели классификации и регрессии.
-
* Альтернативный вариант разреживания через L0-регуляризацию.
+
* Модель коррелированных тем CTM (Correlated Topic Model).
-
* Связь разреженности и единственности неотрицательного матричного разложения.
+
* Регуляризаторы гиперссылок и цитирования. Выявление тематических влияний в научных публикациях.
-
* Разреживание предметных тем и сглаживание фоновых тем. Автоматическое выделение стоп-слов.
+
-
'''Регуляризаторы частичного обучения.'''
+
'''Время и пространство.'''
-
* Частичное обучение как выборочное сглаживание.
+
* Регуляризаторы времени.
-
* Сфокусированные тематические модели. Использование словаря для выделения предметных тем.
+
* Обнаружение и отслеживание тем.
-
* Пример: выделение тематики эпидемий, этнических конфликтов.
+
* Гео-пространственные модели.
-
'''Ковариационные регуляризаторы.'''
+
'''Социальные сети.'''
-
* Дековариация тем.
+
* Сфокусированный поиск в социальных медиа (пример: поиск этно-релевантного контента).
-
* Тематические модели цитирования.
+
* Выявление тематических сообществ. Регуляризаторы для направленных и ненаправленных связей.
-
* Задача выявления корреляций между темами, модель CTM.
+
* Регуляризаторы для выявления социальных ролей пользователей.
-
* Оценивание параметров (матрицы ковариаций) в модели CTM.
+
-
'''Регуляризаторы для классификации и регрессии.'''
+
== Именование и суммаризация тем ==
-
* Задачи регрессии на текстах. Примеры. Регуляризатор. Формула М-шага.
+
Презентация: [[Media:Voron25ptm-sum.pdf|(PDF,&nbsp;2,9&nbsp;МБ)]] {{важно|— обновление 28.04.2025}}.
-
* Задачи классификации текстов. Примеры. Регуляризатор. Формула М-шага.
+
[https://youtu.be/nShxhkPbGWY старая видеозапись]
-
'''Задание 1.3'''
+
'''Методы суммаризации текстов.'''
-
Обязательные пункты: 1 и любой из остальных.
+
* Задачи автоматической суммаризации текстов. Подходы к суммаризации: extractive и abstractive.
-
# Реализовать разреживание в онлайновом алгоритме OEM.
+
* Оценивание и отбор предложений для суммаризации. Релаксационный метод для многокритериальной дискретной оптимизации.
-
# Исследовать зависимость правдоподобия модели и точности восстановления от степени разреженности исходных модельных данных.
+
* Тематическая модель предложений для суммаризации.
-
# Исследовать влияние разреживания на правдоподобие модели и точность восстановления. Проверить гипотезу, что если исходные данные разрежены, то разреживание существенно улучшает точность восстановления и слабо влияет на правдоподобие модели.
+
* Критерии качества суммаризации. Метрики ROUGE, BLUE.
-
# Исследовать влияние частичной разметки на правдоподобие модели и точность восстановления. Проверить гипотезу, что небольшой доли правильно размеченных документов уже достаточно для существенного улучшения правдоподобия и устойчивости модели.
+
-
# Исследовать влияние сглаживания на правдоподобие модели и точность восстановления.
+
-
'''Литература:''' [Воронцов, 2013, 2015], [Chemudugunta, 2006].
+
'''Автоматическое именование тем (topic labeling).'''
 +
* Формирование названий-кандидатов.
 +
* Релевантность, покрытие, различность.
 +
* Оценивание качества именования тем.
-
===Оценивание качества тематических моделей===
+
'''Задача суммаризации темы'''
 +
* Задача ранжирования документов
 +
* Задача фильтрации репрезентативных релевантных фраз.
 +
* Задача генерации связного текста
-
'''Реальные данные.'''
+
== Тематические модели сочетаемости слов ==
-
* Текстовые коллекции, библиотеки алгоритмов, источники информации.
+
Презентация: [[Media:Voron25ptm-cooc.pdf|(PDF,&nbsp;1,4&nbsp;МБ)]] {{важно|— обновление 5.05.2025}}.
-
* Внутренние и внешние критерии качества.
+
[https://youtu.be/zuN5HECqv3I?list=PLk4h7dmY2eYEnsGW3GIMvIhxPeifcQvQt старая видеозапись] и ещё одна
-
* Дополнительные данные для построения внешних критериев качества.
+
[https://youtu.be/k46UzzMSKt0?list=PLk4h7dmY2eYEnsGW3GIMvIhxPeifcQvQt&t=22 старая видеозапись]
-
'''Перплексия и правдоподобие.'''
+
'''Мультиграммные модели и выделение терминов.'''
-
* Определение и интерпретация перплекcии.
+
* Алгоритм TopMine для быстрого поиска частых фраз. Критерии выделения коллокаций.
-
* Перплексия контрольной коллекции. Проблема новых слов в контрольной коллекции.
+
* Синтаксический разбор. Нейросетевые синтаксические анализаторы SyntaxNet, UDpipe.
-
* Проблема сравнения моделей с разными словарями.
+
* Критерии тематичности фраз.
-
* Относительная перплексия.
+
* Комбинирование синтаксической, статистической и тематической фильтрации фраз.
-
''' Оценивание качества темы.'''
+
'''Тематические модели дистрибутивной семантики.'''
-
* Лексическое ядро темы: множество типичных терминов темы.
+
* Дистрибутивная гипотеза. Модели CBOW и SGNS в программе word2vec.
-
* Чистота и контрастность темы
+
* Модель битермов BTM (Biterm Topic Model) для тематизации коллекций коротких текстов.
-
* Документное ядро темы: множество типичных документов темы.
+
<!--* Модель всплесков BBTM (Bursty Biterm Topic Model). -->
-
* Однородность темы: распределение расстояний между p(w|t) и p(w|t,d).
+
* Модели WNTM (Word Network Topic Model) и WTM (Word Topic Model). Связь с моделью word2vec.
-
* Конфликтность темы: близость темы к другим темам.
+
<!--* Регуляризаторы когерентности. -->
-
'''Статистические тесты условной независимости.'''
+
'''Позиционный регуляризатор в ARTM.'''
-
* Методология проверки статистических гипотез. Критерий согласия хи-квадрат Пирсона.
+
* Гипотеза о сегментной структуре текста.
-
* Проблема разреженности распределения. Эксперименты, показывающие неадекватность асимптотического распределения статистики хи-квадрат.
+
* Регуляризация и пост-обработка Е-шага. Формулы М-шага.
-
* Статистики модифицированного хи-квадрат, Кульбака-Лейблера, Хеллингера.
+
* Примеры регуляризаторов Е-шага. Разреживание распределения p(t|d,w). Сглаживание тематики слов по контексту.
-
* Обобщённое семейство статистик Кресси-Рида.
+
-
* Эмпирическое оценивание квантилей распределения статистики Кресси-Рида.
+
-
* Применения теста условной независимости для поиска плохо смоделированных тем, документов, терминов. Поиск тем для расщепления.
+
-
'''Литература:''' [Newman, 2009–2011].
+
'''Дополнительный материал:'''
 +
* ''Потапенко А. А.'' Векторные представления слов и документов. DataFest'4. [https://www.youtube.com/watch?v=KEXWC-ICH_Y '''Видео'''].
-
===Внешние оценки качества тематических моделей===
+
== Байесовское обучение модели LDA ==
 +
Презентация: [[Media:Voron25ptm-bayes.pdf|(PDF,&nbsp;2,1&nbsp;МБ)]] {{важно|— обновление 11.05.2025}}.
 +
[https://youtu.be/ZAtfN0ApQh0?list=PLk4h7dmY2eYEnsGW3GIMvIhxPeifcQvQt&t=20 старая видеозапись]
-
'''Оценивание интерпретируемости тем.'''
+
'''Классические модели PLSA, LDA.'''
-
* Экспертное оценивание интерпретируемости.
+
* Модель PLSA.
-
* Асессорская разметка терминов и документов, релевантных теме.
+
* Модель LDA. Распределение Дирихле и его свойства.
-
* Метод интрузий.
+
* Максимизация апостериорной вероятности для модели LDA.
-
* Радикальное улучшение интерпретируемости в n-граммных тематических моделях.
+
-
'''Когерентность.'''
+
'''Вариационный байесовский вывод.'''
-
* Определение когерентности.
+
* Основная теорема вариационного байесовского вывода.
-
* Эксперименты, показывающие связь когерентности и интерпретируемости.
+
* [[Вариационный байесовский вывод]] для модели LDA.
-
* Способы оценивания совместной встречаемости слов.
+
* VB ЕМ-алгоритм для модели LDA.
-
'''Суммаризация темы.'''
+
'''Сэмплирование Гиббса.'''
-
* Проблема визуализации тем.
+
* Основная теорема о сэмплировании Гиббса.
-
* Выделение тематичных слов и предложений.
+
* [[Сэмплирование Гиббса]] для модели LDA.
-
* Кластеризация тематичных предложений.
+
* GS ЕМ-алгоритм для модели LDA.
-
* Ранжирование тематичных предложений.
+
-
* Асессорская разметка предложений, релевантных теме.
+
-
* Задача автоматического именования темы.
+
-
'''Критерии качества классификации и ранжирования.'''
+
'''Замечания о байесовском подходе.'''
-
* Полнота, точность и F-мера в задачах классификации и ранжирования.
+
* Оптимизация гиперпараметров в LDA.
-
* Критерии качества ранжирования: MAP, DCG, NDCG.
+
* Графическая нотация (plate notation). [http://zinkov.com/posts/2013-07-28-stop-using-plates Stop using plate notation].
-
* Оценка качества тематического поиска документов по их длинным фрагментам.
+
* Сравнение байесовского подхода и ARTM.
 +
* Как читать статьи по байесовским моделям и строить эквивалентные ARTM-модели.
-
'''Задание 1.4.'''
+
== Проект «Мастерская знаний» ==
-
# Применить OEM к реальным коллекциям.
+
Презентация: [[Media:Voron25ptm-kf.png|(PNG,&nbsp;8,1&nbsp;МБ)]] {{важно|— обновление 3.03.2025}}.
-
# Исследовать на реальных данных зависимость внутренних и внешних критериев качества от эвристических параметров алгоритма обучения OEM.
+
-
# В экспериментах на реальных данных построить зависимости перплексии обучающей и контрольной коллекции от числа итераций и числа тем.
+
-
'''Литература:'''
+
'''Проект «Мастерская знаний»'''
 +
* Цели, задачи, концепция проекта. Тематические подборки научных текстов.
 +
* Модель векторизации текста для поиска и рекомендаций научных статей.
 +
* Основные сервисы «Мастерской знаний».
-
===Мультимодальные регуляризованные тематические модели===
+
'''Место тематического моделирования в «Мастерской знаний»'''
-
* ''Напоминания''. Аддитивная регуляризация тематических моделей.
+
* Сервис тематизации подборки.
 +
* Сервисы выявления научных трендов и построения хронологических карт.
 +
* Вспомогательные функции в сервисе полуавтоматической суммаризации.
-
'''Мультимодальная АРТМ.'''
+
'''Карты знаний'''
-
* Виды модельностей и примеры прикладных задач.
+
* Задачи иерархической суммаризации одной статьи, подборки статей.
-
* Вывод формул М-шага.
+
* Принципы построения интеллект-карт и карт знаний.
-
* Тематическая модель классификации. Пример: [[Технология информационного анализа электрокардиосигналов]].
+
* Что такое «тема»? Отличия тематизации и картирования.
-
* Тематическая модель текста и изображений.
+
-
* Задача аннотирования изображений.
+
-
'''Мультиязычные тематические модели.'''
+
== Проект «Тематизатор» ==
-
* Параллельные и сравнимые коллекции.
+
Презентация: [[Media:Voron25ptm-project.pdf|(PDF,&nbsp;6,7&nbsp;МБ)]] {{важно|— обновление 21.04.2025}}.
-
* Регуляризаторы для учёта двуязычных словарей.
+
[https://youtu.be/LctW1J93lmw?list=PLk4h7dmY2eYE_JjvexGUS5MSozoxDFovp Видеозапись]
-
'''Модели многоматричных разложений.'''
+
'''Визуализация тематических моделей'''
-
* Понятие порождающей модальности.
+
* Концепция distant reading.
-
* Вывод формул М-шага.
+
* Карты знаний, иерархии, взаимосвязи, динамика, сегментация.
-
* Автор-тематическая модель (author-topic model).
+
* Спектр тем.
-
* Модель для выделения поведений объектов в видеопотоке.
+
* Визуализация матричного разложения.
-
'''Гиперграфовая модель.'''
+
'''Примеры прикладных задач'''
-
* Примеры транзакционных данных в социальных и рекламных сетях.
+
* Поиск этно-релевантных тем в социальных сетях.
-
* Вывод формул М-шага.
+
* Анализ программ развития российских вузов.
 +
* Поиск и рубрикация научных статей на 100 языках.
 +
* Проекты Школы Прикладного Анализа Данных.
-
'''Литература:'''
+
'''Анализ требований к «Тематизатору»'''
 +
* Функциональные требования.
 +
* Требования к интерпретируемости.
 +
* Основной пользовательский сценарий: Загрузка, Предобработка, Моделирование, Визуализация, Коррекция.
 +
* Этапизация работ.
-
===Определение числа тем и иерархические модели===
+
<!---
 +
== Теория ЕМ-алгоритма ==
 +
Презентация: [[Media:Voron24ptm-emlda.pdf|(PDF,&nbsp;2,0&nbsp;МБ)]] {{важно|— обновление 25.10.2024}}.
 +
[https://youtu.be/DBF5QAFC1V0?list=PLk4h7dmY2eYEnsGW3GIMvIhxPeifcQvQt старая видеозапись]
-
'''Регуляризатор энтропийного разреживания.'''
+
'''Общий EM-алгоритм.'''
-
* Регуляризатор и формула М-шага. Эффект строкового разреживания.
+
* EM-алгоритм для максимизации неполного правдоподобия.
-
* Определение истинного числа тем в экспериментах с полумодельными данными.
+
* Регуляризованный EM-алгоритм. Сходимость в слабом смысле.
-
* Гипотеза о несуществовании истинного числа тем.
+
* Альтернативный вывод формул ARTM.
-
* Эффект отбрасывания малых, дублирующих и линейно зависимых тем.
+
-
* Сравнение с моделью иерархических процессов Дирихле.
+
-
'''Тематическая модель с фиксированной иерархией.'''
+
'''Эксперименты с моделями PLSA, LDA.'''
-
* Задачи категоризации текстов. Стандартный метод решения — сведение к последовательности задач классификации.
+
* Проблема неустойчивости (на синтетических данных).
-
* Необходимость частичного обучения для задачи категоризации.
+
* Проблема неустойчивости (на реальных данных).
-
* Вероятностная формализация отношения «тема–подтема». Тождества, связывающие распределения тем и подтем
+
* Проблема переобучения и робастные модели.
-
* Задача построения разреженного иерархического тематического профиля документа.
+
-
'''Послойное нисходящее построение тематической иерархии.'''
+
== Моделирование сегментированного текста ==
-
* Регуляризатор матрицы Фи.
+
Презентация: [[Media:Voron24ptm-segm.pdf|(PDF,&nbsp;2,1&nbsp;МБ)]] {{важно|— обновление 21.11.2024}}.
-
* Регуляризатор матрицы Тета.
+
[https://youtu.be/k46UzzMSKt0?list=PLk4h7dmY2eYEnsGW3GIMvIhxPeifcQvQt&t=22 старая видеозапись]
-
* Измерение и оптимизация качества иерархических моделей.
+
-
* Разреживание вероятностного отношения тема—подтема.
+
-
 
+
-
'''Одновременное построение всех слоёв тематической иерархии.'''
+
-
 
+
-
'''Литература:''' .
+
-
 
+
-
===Тематические модели, учитывающие порядок слов===
+
'''Мультиграммные модели.'''
'''Мультиграммные модели.'''
-
* Задача выделения терминов как ключевых фраз (словосочетаний). Словари терминов.
+
* Модель BigramTM.
-
* Морфологический и синтаксический анализ текста.
+
* Модель Topical N-grams (TNG).
-
* Отбор фраз с подчинительными связями.
+
* Мультимодальная мультиграммная модель.
-
* Отбор фраз по статистическому критерию коллокации C-Value. Совмещение критериев TF-IDF и CValue.
+
-
* Отбор фраз по оценке тематичности.
+
-
* Задача сокращения словаря (vocabulary reduction) и проблема сравнения моделей с разными словарями.
+
-
'''Регуляризаторы для выделения энграмм.'''
+
'''Тематические модели предложений.'''
-
* Биграммная тематическая модель.
+
* Тематическая модель предложений senLDA.
 +
* Модель коротких сообщений Twitter-LDA.
 +
* Сегментоиды. Лексические цепочки.
-
'''Сегментирующие тематические модели.'''
+
'''Тематическая сегментация текста.'''
-
* Позиционный регуляризатор, вывод формул М-шага.
+
* Метод TopicTiling. Критерии определения границ сегментов.
-
* Пост-обработка Е-шага.
+
* Критерии качества сегментации.
-
* Интерпретация текста как пучка временных рядов и задача разладки.
+
* Оптимизация параметров модели TopicTiling.
-
* Алгоритм тематической сегментации.
+
--->
-
* Тематические модели предложений (sentence topic model).
+
-
'''Векторная модель word2vec.'''
+
=Отчетность по курсу=
-
* Векторная модель word2vec и её интерпретация как латентной модели с матричным разложением.
+
Условием сдачи курса является выполнение индивидуальных практических заданий.
-
* Гибрид тематической модели и векторной модели word2vec.
+
-
* Связь word2vec с регуляризатором когерентности.
+
-
* Эксперименты с гибридной моделью W2V-TM.
+
-
'''Литература:''' .
+
'''Рекомендуемая структура отчёта об исследовании:'''
 +
* Постановка задачи: неформальное описание, ДНК (дано–найти–критерий), структура данных
 +
* Описание простого решения baseline
 +
* Описание основного решения и его вариантов
 +
* Описание набора данных и методики экспериментов
 +
* Результаты экспериментов по подбору гиперпараметров основного решения
 +
* Результаты экспериментов по сравнению основного решения с baseline
 +
* Примеры визуализации модели
 +
* Выводы: что работает, что не работает, инсайты
 +
* Ссылка на код
-
===Динамические и пространственные тематические модели===
+
'''Примеры отчётов:'''
 +
* [[Media:kibitova16ptm.pdf|Валерия Кибитова, 2016]]
 +
* [[Media:filin18ptm.pdf|Максим Филин, 2018]]
 +
* [[Media:ikonnikova18ptm.pdf|Мария Иконникова, 2018]]
-
'''Тематические модели с модальностью времени.'''
+
=Литература=
-
* Регуляризатор разреживания тем в каждый момент времени.
+
-
* Регуляризаторы сглаживания темы как временного ряда.
+
-
* Вывод M-шага для негладкого регуляризатора.
+
-
 
+
-
'''Тематические модели с модальностью геолокации.'''
+
-
* Тематические модели социальных сетей.
+
-
 
+
-
===Траектории регуляризации===
+
-
 
+
-
'''Обучение с подкреплением'''
+
-
* Контекстный многорукий бандит.
+
-
* Инкрементная регрессия.
+
-
* Регрессия с верхними доверительными границами (UCB).
+
-
 
+
-
'''Задача оптимизации трактории в пространстве коэффициентов регуляризации'''
+
-
* Относительные коэффициенты регуляризации.
+
-
* Признаковое описание контекста. Метрики качества тематической модели.
+
-
* Функция премии и скаляризация критериев.
+
-
* Особенности реализации обучения с подкреплением в онлайновом ЕМ-алгоритме.
+
-
 
+
-
===Визуализация тематических моделей===
+
-
 
+
-
'''Навигация по тематической модели.'''
+
-
* Визуализатор TMVE.
+
-
* Визуализатор Termite.
+
-
* Визуализатор для [[BigARTM]].
+
-
 
+
-
'''Методы визуализации.'''
+
-
* Задача и методы многомерного шкалирования.
+
-
* Визуализация «дорожной карты» темы или набора тем.
+
-
* Визуализация тематических иерархий.
+
-
* Визуализация динамических моделей, метафора «реки тем».
+
-
* Визуализация тематической структуры документа.
+
-
* Визуализация модели трёх источников.
+
-
 
+
-
'''Средства разведочного поиска.'''
+
-
* Концепция пользовательского интерфейса для разведочного поиска.
+
-
* Концепция иерархической суммаризации.
+
-
 
+
-
===Большие данные===
+
-
 
+
-
'''Параллельные и распределённые алгоритмы.'''
+
-
* Обзор подходов к распараллеливанию онлайнового EМ-алгоритма.
+
-
* Распараллеливание онлайнового EМ-алгоритма в [[BigARTM]].
+
-
* Распределённое хранение коллекции.
+
-
 
+
-
'''Обработка больших коллекций в BigARTM.'''
+
-
* Особенности предварительной обработки.
+
-
* Коллекция Википедии.
+
-
* Коллекция arXiv.org.
+
-
* Коллекция социальной сети VK.
+
-
 
+
-
==Литература==
+
-
 
+
-
'''Основная литература'''
+
 +
# ''Воронцов К. В.'' [[Media:voron17survey-artm.pdf|Вероятностное тематическое моделирование: теория регуляризации ARTM и библиотека с открытым кодом BigARTM]]. 2025.
 +
# ''Xiaobao Wu, Thong Nguyen, Anh Tuan Luu.'' [https://arxiv.org/abs/2401.15351 A Survey on Neural Topic Models: Methods, Applications, and Challenges]. 2023.
 +
# ''Rob Churchill, Lisa Singh.'' [https://dl.acm.org/doi/10.1145/3507900 The Evolution of Topic Modeling]. 2022.
 +
# ''He Zhao, Dinh Phung, Viet Huynh, Yuan Jin, Lan Du, Wray Buntine.'' [https://arxiv.org/abs/2103.00498 Topic Modelling Meets Deep Neural Networks: A Survey]. 2021.
 +
# ''Hamed Jelodar, Yongli Wang, Chi Yuan, Xia Feng.'' [https://arxiv.org/ftp/arxiv/papers/1711/1711.04305.pdf Latent Dirichlet Allocation (LDA) and Topic modeling: models, applications, a survey]. 2017.
 +
# ''Hofmann T.'' Probabilistic latent semantic indexing // Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval. — New York, NY, USA: ACM, 1999. — Pp. 50–57.
 +
# ''Blei D. M., Ng A. Y., Jordan M. I.'' Latent Dirichlet allocation // Journal of Machine Learning Research. — 2003. — Vol. 3. — Pp. 993–1022.
 +
# ''Asuncion A., Welling M., Smyth P., Teh Y. W.'' On smoothing and inference for topic models // Proceedings of the International Conference on Uncertainty in Artificial Intelligence. — 2009.
 +
<!--
 +
# ''Янина А. О., Воронцов К. В.'' [http://jmlda.org/papers/doc/2016/no2/Ianina2016Multimodal.pdf Мультимодальные тематические модели для разведочного поиска в коллективном блоге] // Машинное обучение и анализ данных. 2016. T.2. №2. С.173-186.
# ''Воронцов К.В.'' Тематическое моделирование в BigARTM: теория, алгоритмы, приложения. [[Media:Voron-2015-BigARTM.pdf|Voron-2015-BigARTM.pdf]].
# ''Воронцов К.В.'' Тематическое моделирование в BigARTM: теория, алгоритмы, приложения. [[Media:Voron-2015-BigARTM.pdf|Voron-2015-BigARTM.pdf]].
# ''Воронцов К.В.'' Лекции по тематическому моделированию. [[Media:Voron-2013-ptm.pdf|Voron-2013-ptm.pdf]].
# ''Воронцов К.В.'' Лекции по тематическому моделированию. [[Media:Voron-2013-ptm.pdf|Voron-2013-ptm.pdf]].
-
# ''Vorontsov K. V., Potapenko A. A.'' [[Media:Voron14mlj.pdf|Additive Regularization of Topic Models]] // Machine Learning. Special Issue “Data Analysis and Intelligent Optimization with Applications”: Volume 101, Issue 1 (2015), Pp. 303-323. [[Media:Voron14mlj-rus.pdf|Русский перевод]]
 
'''Дополнительная литература'''
'''Дополнительная литература'''
Строка 420: Строка 379:
# Воронцов К. В., Фрей А. И., Ромов П. А., Янина А. О., Суворова М. А., Апишев М. А. [[Media:Voron15damdid.pdf|BigARTM: библиотека с открытым кодом для тематического моделирования больших текстовых коллекций]] // Аналитика и управление данными в областях с интенсивным использованием данных. XVII Международная конференция DAMDID/RCDL’2015, Обнинск, 13-16 октября 2015.
# Воронцов К. В., Фрей А. И., Ромов П. А., Янина А. О., Суворова М. А., Апишев М. А. [[Media:Voron15damdid.pdf|BigARTM: библиотека с открытым кодом для тематического моделирования больших текстовых коллекций]] // Аналитика и управление данными в областях с интенсивным использованием данных. XVII Международная конференция DAMDID/RCDL’2015, Обнинск, 13-16 октября 2015.
# Маннинг К., Рагхаван П., Шютце Х. Введение в информационный поиск. — Вильямс, 2011.
# Маннинг К., Рагхаван П., Шютце Х. Введение в информационный поиск. — Вильямс, 2011.
-
# Asuncion A., Welling M., Smyth P., Teh Y. W. On smoothing and inference for topic models // Proceedings of the International Conference on Uncertainty in Artificial Intelligence. — 2009.
 
-
# Blei D. M., Ng A. Y., Jordan M. I. Latent Dirichlet allocation // Journal of Machine Learning Research. — 2003. — Vol. 3. — Pp. 993–1022.
 
# Chemudugunta C., Smyth P., Steyvers M. Modeling general and specific aspects of documents with a probabilistic topic model // Advances in Neural Information Processing Systems. — MIT Press, 2006. — Vol. 19. — Pp. 241–248.
# Chemudugunta C., Smyth P., Steyvers M. Modeling general and specific aspects of documents with a probabilistic topic model // Advances in Neural Information Processing Systems. — MIT Press, 2006. — Vol. 19. — Pp. 241–248.
# Daud A., Li J., Zhou L., Muhammad F. Knowledge discovery through directed probabilistic topic models: a survey // Frontiers of Computer Science in China.— 2010.— Vol. 4, no. 2. — Pp. 280–301.
# Daud A., Li J., Zhou L., Muhammad F. Knowledge discovery through directed probabilistic topic models: a survey // Frontiers of Computer Science in China.— 2010.— Vol. 4, no. 2. — Pp. 280–301.
# Dempster A. P., Laird N. M., Rubin D. B. Maximum likelihood from incomplete data via the EM algorithm // J. of the Royal Statistical Society, Series B. — 1977. — no. 34. — Pp. 1–38.
# Dempster A. P., Laird N. M., Rubin D. B. Maximum likelihood from incomplete data via the EM algorithm // J. of the Royal Statistical Society, Series B. — 1977. — no. 34. — Pp. 1–38.
-
# Hofmann T. Probabilistic latent semantic indexing // Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval. — New York, NY, USA: ACM, 1999. — Pp. 50–57.
 
# Hoffman M. D., Blei D. M., Bach F. R. Online Learning for Latent Dirichlet Allocation // NIPS, 2010. Pp. 856–864.
# Hoffman M. D., Blei D. M., Bach F. R. Online Learning for Latent Dirichlet Allocation // NIPS, 2010. Pp. 856–864.
# Lu Y., Mei Q., Zhai C. Investigating task performance of probabilistic topic models: an empirical study of PLSA and LDA // Information Retrieval. — 2011. — Vol.14, no.2. — Pp. 178–203.
# Lu Y., Mei Q., Zhai C. Investigating task performance of probabilistic topic models: an empirical study of PLSA and LDA // Information Retrieval. — 2011. — Vol.14, no.2. — Pp. 178–203.
 +
# Vorontsov K. V., Potapenko A. A. [[Media:Voron14mlj.pdf|Additive Regularization of Topic Models]] // Machine Learning. Special Issue “Data Analysis and Intelligent Optimization with Applications”: Volume 101, Issue 1 (2015), Pp. 303-323. [[Media:Voron14mlj-rus.pdf|Русский перевод]]
# Vorontsov K. V., Frei O. I., Apishev M. A., Romov P. A., Suvorova M. A., Yanina A. O. [[Media:Voron15cikm-tm.pdf|Non-Bayesian Additive Regularization for Multimodal Topic Modeling of Large Collections]] // Proceedings of the 2015 Workshop on Topic Models: Post-Processing and Applications, October 19, 2015, Melbourne, Australia. ACM, New York, NY, USA. pp. 29–37.
# Vorontsov K. V., Frei O. I., Apishev M. A., Romov P. A., Suvorova M. A., Yanina A. O. [[Media:Voron15cikm-tm.pdf|Non-Bayesian Additive Regularization for Multimodal Topic Modeling of Large Collections]] // Proceedings of the 2015 Workshop on Topic Models: Post-Processing and Applications, October 19, 2015, Melbourne, Australia. ACM, New York, NY, USA. pp. 29–37.
# Wallach H., Mimno D., McCallum A. Rethinking LDA: Why priors matter // Advances in Neural Information Processing Systems 22 / Ed. by Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, A. Culotta. — 2009. — Pp. 1973–1981.
# Wallach H., Mimno D., McCallum A. Rethinking LDA: Why priors matter // Advances in Neural Information Processing Systems 22 / Ed. by Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, A. Culotta. — 2009. — Pp. 1973–1981.
 +
-->
-
== Ссылки ==
+
= Ссылки =
-
* [http://www.youtube.com/watch?v=vSzsuq7uHPE Видеозапись лекции на ТМШ, 19 июня 2015]
+
* [[Тематическое моделирование]]
* [[Тематическое моделирование]]
* [[Аддитивная регуляризация тематических моделей]]
* [[Аддитивная регуляризация тематических моделей]]
* [[Коллекции документов для тематического моделирования]]
* [[Коллекции документов для тематического моделирования]]
* [[BigARTM]]
* [[BigARTM]]
-
* Конспект лекций: [[Media:Voron-2013-ptm.pdf|Voron-2013-ptm.pdf, 2.6 МБ]] {{важно|(обновление 16 октября 2013)}}.
+
* [http://www.youtube.com/watch?v=vSzsuq7uHPE Видеозапись лекции на ТМШ, 19 июня 2015]
-
* BigARTM: тематическое моделирование больших текстовых коллекций. [http://www.meetup.com/Moscow-Data-Fest/events/224856462/ Data Fest #1], 12 сентября 2015. '''[[Media:voron-2015-datafest.pdf|(PDF,&nbsp;6.5&nbsp;МБ)]]'''.
+
* ''Воронцов К.В.'' [[Media:voron-2014-task-PTM.pdf|Практическое задание по тематическому моделированию, 2014.]]
 +
 
 +
'''Материалы для первого ознакомления:'''
 +
* ''[[Media:BigARTM-short-intro.pdf|Тематический анализ больших данных]]''. Краткое популярное введение в BigARTM.
 +
* ''[http://postnauka.ru/video/61910 Разведочный информационный поиск]''. Видеолекция на ПостНауке.
 +
* ''[https://postnauka.ru/faq/86373 Тематическое моделирование]''. FAQ на ПостНауке, совместно с Корпоративным университетом Сбербанка.
 +
* ''[https://www.youtube.com/watch?v=MhNbccnVk5Y Байесовская и классическая регуляризация в вероятностном тематическом моделировании]''. Научно-образовательный семинар «Актуальные проблемы прикладной математики» Новосибирского Государственного Университета, 19 февраля 2021. [[Media:Voron-2021-02-19.pdf|Презентация]].
 +
* ''[https://habrahabr.ru/company/yandex/blog/313340 Тематическое моделирование на пути к разведочному информационному поиску]''. Лекция на DataFest3, 10 сентября 2016. [https://www.youtube.com/watch?v=frLW8UVp_Ik&index=5&list=PLJOzdkh8T5kqfhWXhtYevTUHIvrylDLYu Видеозапись].
 +
 
 +
= Подстраницы =
 +
{{Служебная:Prefixindex/Вероятностные тематические модели (курс лекций, К.В.Воронцов)/}}
[[Категория:Учебные курсы]]
[[Категория:Учебные курсы]]
 +
 +
 +
<!---------------------------------------------------
 +
 +
'''Модели связного текста.'''
 +
* Контекстная документная кластеризация (CDC).
 +
* Метод лексических цепочек.
 +
 +
'''Инициализация.'''
 +
* Случайная инициализация. Инициализация по документам.
 +
* Контекстная документная кластеризация.
 +
* Поиск якорных слов. Алгоритм Ароры.
 +
 +
'''Расширяемые тематические модели.'''
 +
* Пакетный ЕМ-алгоритм.
 +
* Обнаружение новых тем в потоке документов. Инициализация новых тем.
 +
* Проблемы агрегирования коллекций. Жанровая и тематическая фильтрация документов.
 +
 +
== Анализ разнородных данных ==
 +
Презентация: [[Media:Voron18ptm-misc.pdf|(PDF,&nbsp;1,6&nbsp;МБ)]] {{важно|— обновление 03.05.2018}}.
 +
 +
== Примеры приложений тематического моделирования ==
 +
Презентация: [[Media:Voron17ptm11.pdf|(PDF,&nbsp;3,3&nbsp;МБ)]] {{важно|— обновление 16.05.2017}}.
 +
 +
'''Примеры приложений тематического моделирования.'''
 +
* Задача поиска релевантных тем в социальных сетях и новостных потоках.
 +
* Динамическая модель коллекции пресс-релизов.
 +
* Разведочный поиск в коллективном блоге.
 +
* Сценарный анализ записей разговоров контактного центра.
 +
* [[Технология информационного анализа электрокардиосигналов|Информационный анализ электрокардиосигналов]] для скрининговой диагностики.
 +
 +
== Инициализация, траектория регуляризации, тесты адекватности ==
 +
Презентация: [[Media:Voron-PTM-10.pdf|(PDF,&nbsp;Х,Х&nbsp;МБ)]] {{важно|— обновление ХХ.ХХ.2016}}.
 +
 +
'''Траектория регуляризации.'''
 +
* Задача оптимизации трактории в пространстве коэффициентов регуляризации.
 +
* Относительные коэффициенты регуляризации.
 +
* Пространство коэффициентов регуляризации и пространство метрик качества. Регрессионная связь между ними. Инкрементная регрессия.
 +
* Подходы к скаляризации критериев.
 +
* Обучение с подкреплением. Контекстный многорукий бандит. Верхние доверительные границы (UCB).
 +
 +
'''Тесты адекватности.'''
 +
* Статистические тесты условной независимости. Методология проверки статистических гипотез. Критерий согласия хи-квадрат Пирсона.
 +
* Проблема разреженности распределения. Эксперименты, показывающие неадекватность асимптотического распределения статистики хи-квадрат.
 +
* Статистики модифицированного хи-квадрат, Кульбака-Лейблера, Хеллингера.
 +
* Обобщённое семейство статистик Кресси-Рида.
 +
* Эмпирическое оценивание квантилей распределения статистики Кресси-Рида.
 +
* Применения теста условной независимости для поиска плохо смоделированных тем, документов, терминов. Поиск тем для расщепления.
 +
 +
== Обзор оценок качества тематических моделей ==
 +
Презентация: [[Media:Voron-PTM-11.pdf|(PDF,&nbsp;Х,Х&nbsp;МБ)]] {{важно|— обновление ХХ.ХХ.2016}}.
 +
 +
* Внутренние и внешние критерии качества.
 +
* Перплексия и правдоподобие. Интерпретация перплекcии. Перплексия контрольной коллекции. Проблема новых слов в контрольной коллекции. Проблема сравнения моделей с разными словарями. Относительная перплексия.
 +
 +
''' Оценивание качества темы.'''
 +
* Лексическое ядро темы: множество типичных терминов темы.
 +
* Чистота и контрастность темы
 +
* Документное ядро темы: множество типичных документов темы.
 +
* Однородность темы: распределение расстояний между p(w|t) и p(w|t,d).
 +
* Конфликтность темы: близость темы к другим темам.
 +
* Интерпретируемость темы: экспертные оценки, метод интрузий, когерентность. Взрыв интерпретируемости в n-граммных моделях.
 +
 +
'''Устойчивость и полнота.'''
 +
* Эксперименты по оцениванию устойчивости, интерпретируемости и полноты.
 +
* Построение выпуклых оболочек тем и фильтрация зависимых тем в сериях тематических моделей.
 +
 +
'''Критерии качества классификации и ранжирования.'''
 +
* Полнота, точность и F-мера в задачах классификации и ранжирования.
 +
* Критерии качества ранжирования: MAP, DCG, NDCG.
 +
* Оценка качества тематического поиска документов по их длинным фрагментам.
 +
 +
* Вывод M-шага для негладкого регуляризатора.
 +
* Тематическая модель текста и изображений. Задача аннотирования изображений.
 +
-->

Текущая версия

Содержание

Спецкурс читается студентам 2—5 курсов на кафедре «Математические методы прогнозирования» ВМиК МГУ с 2013 года и студентам 6 курса на кафедре «Интеллектуальные системы» ФУПМ МФТИ с 2019 года.

В спецкурсе изучается вероятностное тематическое моделирование (topic modeling) коллекций текстовых документов. Тематическая модель определяет, какие темы содержатся в большой текстовой коллекции, и к каким темам относится каждый документ. Тематические модели позволяют искать тексты по смыслу, а не по ключевым словам, и создавать информационно-поисковые системы нового поколения, основанные на парадигме семантического разведочного поиска (exploratory search). Рассматриваются тематические модели для классификации, категоризации, сегментации, суммаризации текстов естественного языка, а также для рекомендательных систем, анализа банковских транзакционных данных, анализа биомедицинских сигналов. В спецкурсе развивается многокритериальный подход к построению моделей с заданными свойствами — аддитивная регуляризация тематических моделей (АРТМ). Он основан на регуляризации некорректно поставленных задач стохастического матричного разложения. Особое внимание уделяется методам лингвистической регуляризации для моделирования связности текста. Предполагается проведение студентами численных экспериментов на модельных и реальных данных с помощью библиотеки тематического моделирования BigARTM.

От студентов требуются знания курсов линейной алгебры, математического анализа, теории вероятностей. Знание математической статистики, методов оптимизации, машинного обучения, языков программирования Python и С++ желательно, но не обязательно.

Краткая ссылка на эту страницу: bit.ly/2EGWcjA.

Основной материал:

Программа курса

Задача тематического моделирования

Презентация: (PDF, 1,7 МБ) — обновление 11.09.2025. старая видеозапись

Цели и задачи тематического моделирования.

Аддитивная регуляризация тематических моделей.

  • Понятие некорректно поставленной задачи по Адамару. Регуляризация.
  • Лемма о максимизации на единичных симплексах. Условия Каруша–Куна–Таккера.
  • Теорема о необходимом условии максимума регуляризованного правдоподобия для ARTM.
  • Классические тематические модели PLSA и LDA как частные случаи ARTM.

Практика тематического моделирования.

  • Проект с открытым кодом BigARTM.
  • Этапы решения практических задач.
  • Методы предварительной обработки текста.
  • Датасеты и практические задания по курсу.

Моделирование локального контекста

Презентация: (PDF, 3,2 МБ) — обновление 14.09.2025. старая видеозапись

Онлайновый ЕМ-алгоритм.

  • Рациональный ЕМ-алгоритм (встраивание Е-шага внутрь М-шага).
  • Онлайновый EM-алгоритм для ARTM.
  • Пакетный онлайновый регуляризованный EM-алгоритм для ARTM.

Линейная тематизация текста.

  • Линейная тематизация текста за один проход без матрицы \Theta.
  • Локализация E-шага. Линейная тематизация. Коэффициенты внимания. Attentive ARTM.
  • Двунаправленная тематическая модель контекста.
  • Онлайновый EM-алгоритм с однопроходным локализованным E-шагом.

Аналогия с нейросетевыми моделями языка.

  • Свёрточная нейросеть GCNN (Gated Convolutional Network)
  • Модель само-внимания (self-attention) Query-Key-Value.
  • Трансформер и онлайновый EM-алгоритм с многопроходным локализованным E-шагом.
  • Нейросетевая тематическая модель Contextual-Top2Vec.

Реализация ЕМ-алгоритма и комбинирование регуляризаторов

Презентация: (PDF, 1,4 МБ) — обновление 2.10.2025. старая видеозапись

Часто используемые регуляризаторы.

  • Сглаживание и разреживание.
  • Частичное обучение.
  • Декоррелирование тем.
  • Разреживание для отбора тем.

Особенности реализации ЕМ-алгоритма для ARTM.

  • Улучшение сходимости несмещёнными оценками.
  • Замена логарифма в функции потерь.
  • Матричная запись ЕМ-алгоритма.
  • Подбор коэффициентов регуляризации. Траектория регуляризации.
  • Относительные коэффициенты регуляризации.
  • Библиотеки BigARTM и TopicNet.

Эксперименты с регуляризацией.

  • Производительность BigARTM
  • Оценивание качества: перплексия, когерентность, лексическое ядро
  • Регуляризаторы сглаживания, разреживания, декоррелирования и отбора тем.
  • Комбинирование регуляризаторов, эмпирические рекомендации.
  • Эксперименты с отбором тем на синтетических и реальных данных.
  • Сравнение с байесовской моделью HDP (Hierarchical Dirichlet Process).
  • Эффект отбрасывания малых, дублирующих и линейно зависимых тем.

Оценивание качества тематических моделей

Презентация: (PDF, 1,7 МБ) — обновление 2.10.2025. старая видеозапись

Измерение качества тематических моделей.

  • Правдоподобие и перплексия.
  • Интерпретируемость и когерентность. Внутритекстовая когерентность.
  • Разреженность и различность.

Проверка гипотезы условной независимости.

  • Статистики на основе KL-дивергенции и их обобщения.
  • Регуляризатор семантической однородности.
  • Применение статистических тестов условной независимости.

Проблема тематической несбалансированности в данных

  • Проблема малых тем и тем-дубликатов
  • Тематическая несбалансированность как основная причина неинтерпретируемости тем
  • Эксперименты с регуляризаторами отбора тем и декоррелирования
  • Регуляризатор семантической однородности
  • Подходы к балансировке тем

Тематический информационный поиск

Презентация: (PDF, 9,4 МБ) — обновление 21.10.2025. старая видеозапись

Мультимодальные тематические модели.

  • Примеры модальностей.
  • Мультимодальный ARTM и регуляризованный ЕМ-алгоритм.

Иерархические тематические модели.

  • Иерархии тем. Послойное построение иерархии.
  • Регуляризаторы для разделения тем на подтемы.
  • Псевдодокументы родительских тем.
  • Модальность родительских тем.

Эксперименты с тематическим поиском.

  • Методика измерения качества поиска.
  • Тематическая модель для документного поиска.
  • Оптимизация гиперпараметров.

BigARTM и базовые инструменты

Мурат Апишев. Презентация: (zip, 0,6 МБ) — обновление 17.02.2017. Видеозапись

Предварительная обработка текстов

  • Парсинг «сырых» данных.
  • Токенизация, стемминг и лемматизация.
  • Выделение энграмм.
  • Законы Ципфа и Хипса. Фильтрация словаря коллекции. Удаление стоп-слов.

Библиотека BigARTM

  • Методологические рекоммендации по проведению экспериментов.
  • Установка BigARTM.
  • Формат и импорт входных данных.
  • Обучение простой модели (без регуляризации): создание, инициализация, настройка и оценивание модели.
  • Инструмент визуализации тематических моделей VisARTM. Основные возможности, демонстрация работы.

Дополнительный материал:

  • Презентация: (PDF, 1,5 МБ) — обновление 17.03.2017.
  • Видео — обновление 22.03.2017.
  • Воркшоп по BigARTM на DataFest'4. Видео.

Мультимодальные тематические модели

Презентация: (PDF, 1,8 МБ) — обновление 21.10.2025. старая видеозапись

Мультиязычные тематические модели.

  • Параллельные и сравнимые коллекции.
  • Регуляризаторы для учёта двуязычных словарей.
  • Кросс-язычный информационный поиск.

Трёхматричные модели.

  • Модели трёхматричных разложений. Понятие порождающей модальности.
  • Автор-тематическая модель (author-topic model).
  • Модель для выделения поведений объектов в видеопотоке.

Тематические модели транзакционных данных.

  • Примеры транзакционных данных в рекомендательных системах, социальных и рекламных сетях.
  • Гиперграфовая модель ARTM. Теорема о необходимом условии максимума регуляризованного правдоподобия.
  • Транзакционные данные в рекомендательных системах. Симметризованная гиперграфовая модель ARTM.
  • Гиперграфовые тематические модели языка. Тематическая модель предложений и сегментоидов.
  • Анализ транзакционных данных для выявления паттернов экономического поведения клиентов банка. Видео.
  • Анализ банковских транзакционных данных для выявления видов деятельности компаний.

Анализ зависимостей

Презентация: (PDF, 2,5 МБ) — обновление 14.04.2025. старая видеозапись

Зависимости, корреляции, связи.

  • Тематические модели классификации и регрессии.
  • Модель коррелированных тем CTM (Correlated Topic Model).
  • Регуляризаторы гиперссылок и цитирования. Выявление тематических влияний в научных публикациях.

Время и пространство.

  • Регуляризаторы времени.
  • Обнаружение и отслеживание тем.
  • Гео-пространственные модели.

Социальные сети.

  • Сфокусированный поиск в социальных медиа (пример: поиск этно-релевантного контента).
  • Выявление тематических сообществ. Регуляризаторы для направленных и ненаправленных связей.
  • Регуляризаторы для выявления социальных ролей пользователей.

Именование и суммаризация тем

Презентация: (PDF, 2,9 МБ) — обновление 28.04.2025. старая видеозапись

Методы суммаризации текстов.

  • Задачи автоматической суммаризации текстов. Подходы к суммаризации: extractive и abstractive.
  • Оценивание и отбор предложений для суммаризации. Релаксационный метод для многокритериальной дискретной оптимизации.
  • Тематическая модель предложений для суммаризации.
  • Критерии качества суммаризации. Метрики ROUGE, BLUE.

Автоматическое именование тем (topic labeling).

  • Формирование названий-кандидатов.
  • Релевантность, покрытие, различность.
  • Оценивание качества именования тем.

Задача суммаризации темы

  • Задача ранжирования документов
  • Задача фильтрации репрезентативных релевантных фраз.
  • Задача генерации связного текста

Тематические модели сочетаемости слов

Презентация: (PDF, 1,4 МБ) — обновление 5.05.2025. старая видеозапись и ещё одна старая видеозапись

Мультиграммные модели и выделение терминов.

  • Алгоритм TopMine для быстрого поиска частых фраз. Критерии выделения коллокаций.
  • Синтаксический разбор. Нейросетевые синтаксические анализаторы SyntaxNet, UDpipe.
  • Критерии тематичности фраз.
  • Комбинирование синтаксической, статистической и тематической фильтрации фраз.

Тематические модели дистрибутивной семантики.

  • Дистрибутивная гипотеза. Модели CBOW и SGNS в программе word2vec.
  • Модель битермов BTM (Biterm Topic Model) для тематизации коллекций коротких текстов.
  • Модели WNTM (Word Network Topic Model) и WTM (Word Topic Model). Связь с моделью word2vec.

Позиционный регуляризатор в ARTM.

  • Гипотеза о сегментной структуре текста.
  • Регуляризация и пост-обработка Е-шага. Формулы М-шага.
  • Примеры регуляризаторов Е-шага. Разреживание распределения p(t|d,w). Сглаживание тематики слов по контексту.

Дополнительный материал:

  • Потапенко А. А. Векторные представления слов и документов. DataFest'4. Видео.

Байесовское обучение модели LDA

Презентация: (PDF, 2,1 МБ) — обновление 11.05.2025. старая видеозапись

Классические модели PLSA, LDA.

  • Модель PLSA.
  • Модель LDA. Распределение Дирихле и его свойства.
  • Максимизация апостериорной вероятности для модели LDA.

Вариационный байесовский вывод.

Сэмплирование Гиббса.

Замечания о байесовском подходе.

  • Оптимизация гиперпараметров в LDA.
  • Графическая нотация (plate notation). Stop using plate notation.
  • Сравнение байесовского подхода и ARTM.
  • Как читать статьи по байесовским моделям и строить эквивалентные ARTM-модели.

Проект «Мастерская знаний»

Презентация: (PNG, 8,1 МБ) — обновление 3.03.2025.

Проект «Мастерская знаний»

  • Цели, задачи, концепция проекта. Тематические подборки научных текстов.
  • Модель векторизации текста для поиска и рекомендаций научных статей.
  • Основные сервисы «Мастерской знаний».

Место тематического моделирования в «Мастерской знаний»

  • Сервис тематизации подборки.
  • Сервисы выявления научных трендов и построения хронологических карт.
  • Вспомогательные функции в сервисе полуавтоматической суммаризации.

Карты знаний

  • Задачи иерархической суммаризации одной статьи, подборки статей.
  • Принципы построения интеллект-карт и карт знаний.
  • Что такое «тема»? Отличия тематизации и картирования.

Проект «Тематизатор»

Презентация: (PDF, 6,7 МБ) — обновление 21.04.2025. Видеозапись

Визуализация тематических моделей

  • Концепция distant reading.
  • Карты знаний, иерархии, взаимосвязи, динамика, сегментация.
  • Спектр тем.
  • Визуализация матричного разложения.

Примеры прикладных задач

  • Поиск этно-релевантных тем в социальных сетях.
  • Анализ программ развития российских вузов.
  • Поиск и рубрикация научных статей на 100 языках.
  • Проекты Школы Прикладного Анализа Данных.

Анализ требований к «Тематизатору»

  • Функциональные требования.
  • Требования к интерпретируемости.
  • Основной пользовательский сценарий: Загрузка, Предобработка, Моделирование, Визуализация, Коррекция.
  • Этапизация работ.


Отчетность по курсу

Условием сдачи курса является выполнение индивидуальных практических заданий.

Рекомендуемая структура отчёта об исследовании:

  • Постановка задачи: неформальное описание, ДНК (дано–найти–критерий), структура данных
  • Описание простого решения baseline
  • Описание основного решения и его вариантов
  • Описание набора данных и методики экспериментов
  • Результаты экспериментов по подбору гиперпараметров основного решения
  • Результаты экспериментов по сравнению основного решения с baseline
  • Примеры визуализации модели
  • Выводы: что работает, что не работает, инсайты
  • Ссылка на код

Примеры отчётов:

Литература

  1. Воронцов К. В. Вероятностное тематическое моделирование: теория регуляризации ARTM и библиотека с открытым кодом BigARTM. 2025.
  2. Xiaobao Wu, Thong Nguyen, Anh Tuan Luu. A Survey on Neural Topic Models: Methods, Applications, and Challenges. 2023.
  3. Rob Churchill, Lisa Singh. The Evolution of Topic Modeling. 2022.
  4. He Zhao, Dinh Phung, Viet Huynh, Yuan Jin, Lan Du, Wray Buntine. Topic Modelling Meets Deep Neural Networks: A Survey. 2021.
  5. Hamed Jelodar, Yongli Wang, Chi Yuan, Xia Feng. Latent Dirichlet Allocation (LDA) and Topic modeling: models, applications, a survey. 2017.
  6. Hofmann T. Probabilistic latent semantic indexing // Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval. — New York, NY, USA: ACM, 1999. — Pp. 50–57.
  7. Blei D. M., Ng A. Y., Jordan M. I. Latent Dirichlet allocation // Journal of Machine Learning Research. — 2003. — Vol. 3. — Pp. 993–1022.
  8. Asuncion A., Welling M., Smyth P., Teh Y. W. On smoothing and inference for topic models // Proceedings of the International Conference on Uncertainty in Artificial Intelligence. — 2009.

Ссылки

Материалы для первого ознакомления:

Подстраницы

Вероятностные тематические модели (курс лекций, К.В.Воронцов)/2015Вероятностные тематические модели (курс лекций, К.В.Воронцов)/2016Вероятностные тематические модели (курс лекций, К.В.Воронцов)/2017
Вероятностные тематические модели (курс лекций, К.В.Воронцов)/2018Вероятностные тематические модели (курс лекций, К.В.Воронцов)/2019, ВМКВероятностные тематические модели (курс лекций, К.В.Воронцов)/2020
Вероятностные тематические модели (курс лекций, К.В.Воронцов)/2021Вероятностные тематические модели (курс лекций, К.В.Воронцов)/2024