Машинное обучение (курс лекций, К.В.Воронцов)

Материал из MachineLearning.

Перейти к: навигация, поиск

Содержание

Теория обучения машин (machine learning, машинное обучение) находится на стыке прикладной статистики, численных методов оптимизации, дискретного анализа, и за последние 50 лет оформилась в самостоятельную математическую дисциплину. Методы машинного обучения составляют основу ещё более молодой дисциплины — интеллектуального анализа данных (data mining).

В курсе рассматриваются основные задачи обучения по прецедентам: классификация, кластеризация, регрессия, понижение размерности. Изучаются методы их решения, как классические, так и новые, созданные за последние 10–15 лет. Упор делается на глубокое понимание математических основ, взаимосвязей, достоинств и ограничений рассматриваемых методов. Отдельные теоремы приводятся с доказательствами.

Все методы излагаются по единой схеме:

  • исходные идеи и эвристики;
  • их формализация и математическая теория;
  • описание алгоритма в виде слабо формализованного псевдокода;
  • анализ достоинств, недостатков и границ применимости;
  • пути устранения недостатков;
  • сравнение с другими методами.
  • примеры прикладных задач.

Данный курс расширяет и углубляет набор тем, рекомендованный международным стандартом ACM/IEEE Computing Curricula 2001 по дисциплине «Машинное обучение и нейронные сети» (machine learning and neural networks) в разделе «Интеллектуальные системы» (intelligent systems).

Курс читается

На материал данного курса опираются последующие кафедральные курсы. На кафедре ММП ВМиК МГУ параллельно с данным курсом и в дополнение к нему читается спецкурс Теория надёжности обучения по прецедентам, посвящённый проблемам переобучения и оценивания обобщающей способности.

От студентов требуются знания курсов линейной алгебры, математического анализа, теории вероятностей. Знание математической статистики, методов оптимизации и какого-либо языка программирования желательно, но не обязательно.

Ниже представлена расширенная программа — в полном объёме она занимает больше, чем могут вместить в себя два семестра. Каждый параграф приблизительно соответствует одной лекции. Курсивом выделен дополнительный материал, который может разбираться на семинарах.

Замечания для студентов

  • Видеолекции ШАД Яндекс.
  • На подстранице имеется перечень вопросов к устному экзамену. Очень помогает при подготовке к устному экзамену!
  • О найденных ошибках и опечатках сообщайте мне. — К.В.Воронцов 18:24, 19 января 2009 (MSK)
  • Материал, который есть в pdf-тексте, но не рассказывался на лекциях, обычно не входит в программу экзамена.

Первый семестр

Текст лекций: (PDF, 3 МБ) — обновление 4.10.2011.

Основные понятия и примеры прикладных задач

Презентация: (PDF, 0,8 МБ) — обновление 13.02.2014.

Метрические методы классификации

Презентация: (PDF, 1,7 МБ) — обновление 20.02.2014.

Метод ближайших соседей и его обобщения

Отбор эталонов и оптимизация метрики

Логические методы классификации

Текст лекций: (PDF, 625 КБ).
Презентация: (PDF, 1.8 МБ) — обновление 27.02.2014.

Понятия закономерности и информативности

  • Понятие логической закономерности. Эвристическое, статистическое, энтропийное определение информативности. Асимптотическая эквивалентность статистического и энтропийного определения. Сравнение областей эвристических и статистических закономерностей.
  • Разновидности закономерностей: конъюнкции пороговых предикатов (гиперпараллелепипеды), синдромные правила, шары, гиперплоскости.
  • «Градиентный» алгоритм синтеза конъюнкций, частные случаи: жадный алгоритм, стохастический локальный поиск, стабилизация, редукция.
  • Бинаризация признаков. Алгоритм разбиения области значений признака на информативные зоны.

Решающие списки и деревья

Линейные методы классификации

Градиентные методы

Презентация: (PDF, 1,6 МБ) — обновление 06.03.2014.

Метод опорных векторов

Презентация: (PDF, 0,8 МБ) — обновление 13.03.2014.

  • Оптимальная разделяющая гиперплоскость. Понятие зазора между классами (margin).
  • Случаи линейной разделимости и отсутствия линейной разделимости. Связь с минимизацией регуляризованного эмпирического риска. Кусочно-линейная функция потерь.
  • Задача квадратичного программирования и двойственная задача. Понятие опорных векторов.
  • Рекомендации по выбору константы C.
  • Функция ядра (kernel functions), спрямляющее пространство, теорема Мерсера.
  • Способы конструктивного построения ядер. Примеры ядер.
  • Обучение SVM методом активных ограничений. Алгоритм INCAS. Алгоритм SMO.
  • ню-SVM.
  • SVM-регрессия.
  • Метод релевантных векторов RVM
  • Регуляризации для отбора признаков: LASSO SVM, Elastic Net SVM, SFM, RFM.

Методы регрессионного анализа

Презентация: (PDF, 0,9 MБ) — обновление 16.04.2012.

Многомерная линейная регрессия

Нелинейная параметрическая регрессия

Непараметрическая регрессия

Прогнозирование временных рядов

Презентация: (PDF, 0,8 MБ) — обновление 13.11.2013.

Байесовские методы классификации

Презентация: (PDF, 2,4 МБ) — обновление 6.03.2013.

Оптимальный байесовский классификатор

Непараметрическое оценивание плотности

Параметрическое оценивание плотности

Разделение смеси распределений

  • Смесь распределений.
  • EM-алгоритм: основная идея, понятие скрытых переменных. «Вывод» алгоритма без обоснования сходимости. Псевдокод EM-алгоритма. Критерий останова. Выбор начального приближения. Выбор числа компонентов смеси.
  • Стохастический EM-алгоритм.
  • Смесь многомерных нормальных распределений. Сеть радиальных базисных функций (RBF) и применение EM-алгоритма для её настройки.
  • Сопоставление RBF-сети и SVM с гауссовским ядром.

Логистическая регрессия

  • Гипотеза экспоненциальности функций правдоподобия классов. Теорема о линейности байесовского оптимального классификатора. Оценивание апостериорных вероятностей классов с помощью сигмоидной функции активации.
  • Логистическая регрессия. Принцип максимума правдоподобия и логарифмическая функция потерь.
  • Метод стохастического градиента для логарифмической функции потерь. Сглаженное правило Хэбба.
  • Метод наименьших квадратов с итеративным пересчётом весов (IRLS).
  • Пример прикладной задачи: кредитный скоринг. Бинаризация признаков. Скоринговые карты и оценивание вероятности дефолта. Риск кредитного портфеля банка.

Второй семестр

Нейросетевые методы классификации и регрессии

Презентация: (PDF, 1,8 МБ) — обновление 16.04.2012.

Многослойные нейронные сети

Композиционные методы классификации и регрессии

Текст лекций: (PDF, 1 MБ).
Презентация: (PDF, 1.1 МБ) — обновление 04.03.2014.

Линейные композиции, бустинг

Эвристические и стохастические методы


Алгоритмы вычисления оценок

Нелинейные алгоритмические композиции

  • Смесь экспертов, область компетентности алгоритма.
  • Выпуклые функции потерь. Методы построения смесей: последовательный и иерархический.
  • Построение смесей экспертов с помощью EM-алгоритма.
  • Нелинейная монотонная корректирующая операция. Случай классификации. Случай регрессии. Задача монотонизации выборки, изотонная регрессия.

Критерии выбора моделей и методы отбора признаков

Текст лекций: (PDF, 330 КБ).
Презентация: (PDF, 2,5 МБ) — обновление 17.03.2014.

Задачи оценивания и выбора моделей

Теория обобщающей способности

Методы отбора признаков

Обучение без учителя

Презентация: (PDF, 1,0 МБ) — обновление 24.04.2012.

Кластеризация

Сети Кохонена

Таксономия


Поиск ассоциативных правил

Презентация: (PDF, 1.1 МБ) — обновление 23.10.2012.

  • Понятие ассоциативного правила и его связь с понятием логической закономерности.
  • Примеры прикладных задач: анализ рыночных корзин, выделение терминов и тематики текстов.
  • Алгоритм APriori. Два этапа: поиск частых наборов и рекурсивное порождение ассоциативных правил. Недостатки и пути усовершенствования алгоритма APriori.
  • Алгоритм FP-growth. Понятия FP-дерева и условного FP-дерева. Два этапа поиска частых наборов в FP-growth: построение FP-дерева и рекурсивное порождение частых наборов.
  • Общее представление о динамических и иерархических методах поиска ассоциативных правил.

Задачи с частичным обучением

Презентация: (PDF, 0.7 МБ) — обновление 15.11.2011.

  • Постановка задачи Semisupervised Learning, примеры приложений.
  • Простые эвристические методы: self-training, co-training, co-learning.
  • Адаптация алгоритмов кластеризации для решения задач с частичным обучением. Кратчайшиё незамкнутый путь. Алгоритм Ланса-Уильямса. Алгоритм k-средних.
  • Трансдуктивный метод опорных векторов TSVM.
  • Алгоритм Expectation-Regularization на основе многоклассовой регуляризированной логистической регрессии.

Коллаборативная фильтрация

Презентация: (PDF, 1.2 МБ) — обновление 30.10.2012.

Тематическое моделирование

Текст лекций: (PDF, 830 КБ).
Презентация: (PDF, 3.6 МБ) — обновление 04.12.2013.

Обучение с подкреплением

Презентация: (PDF, 0.9 МБ) — обновление 20.11.2012.

  • Задача о много руком бандите. Жадные и эпсилон-жадные стратегии. Среда для экспериментов. Метод сравнения с подкреплением. Метод преследования.
  • Адаптивные стратегии на основе скользящих средних.
  • Уравнения Беллмана. Оптимальные стратегии. Динамическое программирование. Метод итераций по ценностям и по стратегиям.
  • Методы временных разностей: TD, SARSA, Q-метод. Многошаговое TD-прогнозирование. Адаптивный полужадный метод VDBE.

Ссылки

Список подстраниц

Машинное обучение (курс лекций, К.В.Воронцов)/2009Машинное обучение (курс лекций, К.В.Воронцов)/ToDoМашинное обучение (курс лекций, К.В.Воронцов)/Вопросы
Машинное обучение (курс лекций, К.В.Воронцов)/Семестровый курсМашинное обучение (курс лекций, К.В.Воронцов)/Форма отчета
Личные инструменты