Участник:Strijov/Drafts

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
Строка 1509: Строка 1509:
|-
|-
|0
|0
-
|(пример) Метрическая классификация временных рядов
+
|(Example) Metric classification of time series
|[http://svn.code.sf.net/p/mlalgorithms/code/Group274/Goncharov2015MetricClassification/code code],
|[http://svn.code.sf.net/p/mlalgorithms/code/Group274/Goncharov2015MetricClassification/code code],
[https://docs.google.com/document/d/1fx7fVlmnwdTesElt-lbaHvoGEjJC5t_9e-X0ZpUzEcQ/edit?usp=sharing LinkReview],
[https://docs.google.com/document/d/1fx7fVlmnwdTesElt-lbaHvoGEjJC5t_9e-X0ZpUzEcQ/edit?usp=sharing LinkReview],
[https://t.me/joinchat/Ak0SzkfYN_boA3eRtfPKvg Discussion]
[https://t.me/joinchat/Ak0SzkfYN_boA3eRtfPKvg Discussion]
-
|[http://svn.code.sf.net/p/mlalgorithms/code/Group274/Goncharov2015MetricClassification/doc/Goncharov2015MetricClassification.pdf Alexey Goncharov]*, [http://svn.code.sf.net/p/mlalgorithms/code/Group274/Goncharov2015MetricClassification/doc/Goncharov2015MetricClassification.pdf Максим Савинов]
+
|[http://svn.code.sf.net/p/mlalgorithms/code/Group274/Goncharov2015MetricClassification/doc/Goncharov2015MetricClassification.pdf Alexey Goncharov]*, [http://svn.code.sf.net/p/mlalgorithms/code/Group274/Goncharov2015MetricClassification/doc/Goncharov2015MetricClassification.pdf Maxim Savinov]
|-
|-
|1
|1
-
|Прогнозирование направления движения цены биржевых инструментов по новостному потоку0
+
|Forecasting the direction of movement of the price of exchange instruments according to the news flow
|[https://github.com/Intelligent-Systems-Phystech/2018-Project-1 Code],
|[https://github.com/Intelligent-Systems-Phystech/2018-Project-1 Code],
[https://docs.google.com/document/d/1qa6PO_3AXcXPkJKNjQgihBXWkmBpspFWi3Ct34FYonw/edit LinkReview],
[https://docs.google.com/document/d/1qa6PO_3AXcXPkJKNjQgihBXWkmBpspFWi3Ct34FYonw/edit LinkReview],
[https://github.com/Intelligent-Systems-Phystech/2018-Project-1/raw/master/Presentation.pdf Slides],
[https://github.com/Intelligent-Systems-Phystech/2018-Project-1/raw/master/Presentation.pdf Slides],
[https://github.com/Intelligent-Systems-Phystech/2018-Project-1/raw/master/Paper.pdf Report]
[https://github.com/Intelligent-Systems-Phystech/2018-Project-1/raw/master/Paper.pdf Report]
-
|[https://github.com/Intelligent-Systems-Phystech/2018-Project-1/raw/master/Borisov2018Project1/Borisov2018Project1.pdf Александр Борисов],
+
|[https://github.com/Intelligent-Systems-Phystech/2018-Project-1/raw/master/Borisov2018Project1/Borisov2018Project1.pdf Alexander Borisov],
-
[https://github.com/Intelligent-Systems-Phystech/2018-Project-1/blob/master/Drobin2018Project1/Drobin2018Project1.pdf Дробин Максим], [https://github.com/Intelligent-Systems-Phystech/2018-Project-1/raw/master/Govorov2018Project1/Govorov2018Project1.pdf Говоров Иван], [https://github.com/Intelligent-Systems-Phystech/2018-Project-1/raw/master/Mukhitdinova2018Project1/Mukhitdinova2018Project1.pdf Мухитдинова София], [https://github.com/Intelligent-Systems-Phystech/2018-Project-1/raw/master/Rodionov2018Project1/Rodionov2018Project1.pdf Валентин Родионов], [https://github.com/Intelligent-Systems-Phystech/2018-Project-1/raw/master/Akhiarov2018Project1/Akhiarov2018Project1.pdf Валентин Ахияров]
+
[https://github.com/Intelligent-Systems-Phystech/2018-Project-1/blob/master/Drobin2018Project1/Drobin2018Project1.pdf Drobin Maxim], [https://github.com/Intelligent-Systems-Phystech/2018-Project-1/raw/master/Govorov2018Project1/Govorov2018Project1.pdf Govorov Ivan], [https://github.com/Intelligent-Systems-Phystech/2018-Project-1/raw/master/Mukhitdinova2018Project1/Mukhitdinova2018Project1.pdf Mukhitdinova Sofia], [https://github.com/Intelligent-Systems-Phystech/2018-Project-1/raw/master/Rodionov2018Project1/Rodionov2018Project1.pdf Valentin Rodionov], [https://github.com/Intelligent-Systems-Phystech/2018-Project-1/raw/master/Akhiarov2018Project1/Akhiarov2018Project1.pdf Valentin Akhiyarov]
|-
|-
|2
|2
-
|Построение опорных объектов для множества многомерных временных рядов
+
|Construction of reference objects for a set of multidimensional time series
|[https://github.com/Intelligent-Systems-Phystech/2018-Project-2 Code]
|[https://github.com/Intelligent-Systems-Phystech/2018-Project-2 Code]
[https://docs.google.com/document/d/1ruVHmEMgBXcULWsy-mYg2KgAV2SyC5si4T4UHVPMu2E/edit LinkReview]
[https://docs.google.com/document/d/1ruVHmEMgBXcULWsy-mYg2KgAV2SyC5si4T4UHVPMu2E/edit LinkReview]
-
|[https://raw.githubusercontent.com/Intelligent-Systems-Phystech/2018-Project-2/master/Iskhakov2018Project2/test.pdf Исхаков Ришат],
+
|[https://raw.githubusercontent.com/Intelligent-Systems-Phystech/2018-Project-2/master/Iskhakov2018Project2/test.pdf Iskhakov Rishat],
-
[https://raw.githubusercontent.com/Intelligent-Systems-Phystech/2018-Project-2/master/Korepanov2018Project2/test.pdf Корепанов Георгий],
+
[https://raw.githubusercontent.com/Intelligent-Systems-Phystech/2018-Project-2/master/Korepanov2018Project2/test.pdf Korepanov Georgy],
-
[https://raw.githubusercontent.com/Intelligent-Systems-Phystech/2018-Project-2/master/Solodnev2018Project2/test.pdf Степан Солоднев]
+
[https://raw.githubusercontent.com/Intelligent-Systems-Phystech/2018-Project-2/master/Solodnev2018Project2/test.pdfStepan Solodnev]
-
[https://raw.githubusercontent.com/Intelligent-Systems-Phystech/2018-Project-2/master/Solodnev2018Project2/test.pdf Самирханов Данил]
+
[https://raw.githubusercontent.com/Intelligent-Systems-Phystech/2018-Project-2/master/Solodnev2018Project2/test.pdf Samirkhanov Danil]
|-
|-
|3
|3
-
|Динамическое выравнивание многомерных временных рядов
+
|Dynamic alignment of multivariate time series
|[https://github.com/Intelligent-Systems-Phystech/2018-Project-3 Code]
|[https://github.com/Intelligent-Systems-Phystech/2018-Project-3 Code]
[https://docs.google.com/document/d/1ruVHmEMgBXcULWsy-mYg2KgAV2SyC5si4T4UHVPMu2E/edit LinkReview]
[https://docs.google.com/document/d/1ruVHmEMgBXcULWsy-mYg2KgAV2SyC5si4T4UHVPMu2E/edit LinkReview]
Строка 1541: Строка 1541:
[https://github.com/Intelligent-Systems-Phystech/2018-Project-3/raw/master/Morgachev2018Title/paper/Morgachev2018Title.pdf Report]
[https://github.com/Intelligent-Systems-Phystech/2018-Project-3/raw/master/Morgachev2018Title/paper/Morgachev2018Title.pdf Report]
|[https://github.com/Intelligent-Systems-Phystech/2018-Project-3/raw/master/Morgachev2018Title/Morgachev2018Title.pdf Gleb Morgachev],
|[https://github.com/Intelligent-Systems-Phystech/2018-Project-3/raw/master/Morgachev2018Title/Morgachev2018Title.pdf Gleb Morgachev],
-
[https://github.com/Intelligent-Systems-Phystech/2018-Project-3/blob/master/Smirnov2018Title/Smirnov2018Title.pdf Владислав Смирнов],
+
[https://github.com/Intelligent-Systems-Phystech/2018-Project-3/blob/master/Smirnov2018Title/Smirnov2018Title.pdf Vladislav Smirnov],
-
[https://github.com/Intelligent-Systems-Phystech/2018-Project-3/blob/master/Lipnitckaia2018Title/Lipnitckaia2018Title.pdf Татьяна Липницкая]
+
[https://github.com/Intelligent-Systems-Phystech/2018-Project-3/blob/master/Lipnitckaia2018Title/Lipnitckaia2018Title.pdf Tatiana Lipnitskaya]
|-
|-
|4
|4
-
|Автоматическая настройка параметров АРТМ под широкий класс задач
+
|Automatic adjustment of ARTM parameters for a wide class of tasks
|[https://github.com/Intelligent-Systems-Phystech/2018-Project-4 Code],
|[https://github.com/Intelligent-Systems-Phystech/2018-Project-4 Code],
[https://docs.google.com/document/d/1RidglPMH1-Yb1rx7V7QayDDuM-HfL-pF2kkGBWbWrxk/edit LinkReview],
[https://docs.google.com/document/d/1RidglPMH1-Yb1rx7V7QayDDuM-HfL-pF2kkGBWbWrxk/edit LinkReview],
[https://docs.google.com/presentation/d/1WpCbs7Rf9i7oCT25mSTcbBCLlN_tXwdjdv1VQ6Y8bVs/edit#slide=id.p Presentation]
[https://docs.google.com/presentation/d/1WpCbs7Rf9i7oCT25mSTcbBCLlN_tXwdjdv1VQ6Y8bVs/edit#slide=id.p Presentation]
-
|[https://github.com/Intelligent-Systems-Phystech/2018-Project-4/raw/master/Golubeva2018Problem4/Golubeva2018Problem4.pdf Голубева Татьяна],
+
|[https://github.com/Intelligent-Systems-Phystech/2018-Project-4/raw/master/Golubeva2018Problem4/Golubeva2018Problem4.pdf Golubeva Tatiana],
-
[https://github.com/Intelligent-Systems-Phystech/2018-Project-4/raw/master/Ivanova2018Problem4/Ivanova2018Problem4.pdf Иванова Екатерина],
+
[https://github.com/Intelligent-Systems-Phystech/2018-Project-4/raw/master/Ivanova2018Problem4/Ivanova2018Problem4.pdf Ivanova Ekaterina],
-
[https://github.com/Intelligent-Systems-Phystech/2018-Project-4/raw/master/Matveeva2018Problem4/Matveeva2018Problem4.pdf Матвеева Светлана],
+
[https://github.com/Intelligent-Systems-Phystech/2018-Project-4/raw/master/Matveeva2018Problem4/Matveeva2018Problem4.pdf Matveeva Svetlana],
-
[https://github.com/Intelligent-Systems-Phystech/2018-Project-4/raw/master/Trusov2018Problem4/Trusov2018Problem4.pdf Трусов Антон],
+
[https://github.com/Intelligent-Systems-Phystech/2018-Project-4/raw/master/Trusov2018Problem4/Trusov2018Problem4.pdf Trusov Anton],
-
[https://github.com/Intelligent-Systems-Phystech/2018-Project-4/raw/master/Tsaritsyn2018Problem4/Tsaritsyn2018Problem4.pdf Царицын Михаил],
+
[https://github.com/Intelligent-Systems-Phystech/2018-Project-4/raw/master/Tsaritsyn2018Problem4/Tsaritsyn2018Problem4.pdf Tsaritsyn Mikhail],
-
[https://github.com/Intelligent-Systems-Phystech/2018-Project-4/raw/master/Chernonog2018Problem4/Chernonog2018Problem4.pdf Черноног Вячеслав]
+
[https://github.com/Intelligent-Systems-Phystech/2018-Project-4/raw/master/Chernonog2018Problem4/Chernonog2018Problem4.pdf Chernonog Vyacheslav]
|-
|-
|5
|5
-
|Нахождение парафразов
+
|Finding paraphrases
|[https://github.com/Intelligent-Systems-Phystech/2018-Project-5 Code],
|[https://github.com/Intelligent-Systems-Phystech/2018-Project-5 Code],
[https://docs.google.com/document/d/1rTEFOVCDVNPHss09IRG-C95yovUE4XTyryOnpb8DWFA LinkReview]
[https://docs.google.com/document/d/1rTEFOVCDVNPHss09IRG-C95yovUE4XTyryOnpb8DWFA LinkReview]
Строка 1580: Строка 1580:
|-
|-
|8
|8
-
|Порождение признаков с помощью локально-аппроксимирующих моделей
+
|Generation of features using locally approximating models
|[https://github.com/Intelligent-Systems-Phystech/2018-Project-8/tree/master/code Code],
|[https://github.com/Intelligent-Systems-Phystech/2018-Project-8/tree/master/code Code],
[https://docs.google.com/document/d/1e65opLey0Yxo_kAZ4cKTcjMIIYxR1jVPCQrpmr4k29w/edit?usp=sharing LinkReview]
[https://docs.google.com/document/d/1e65opLey0Yxo_kAZ4cKTcjMIIYxR1jVPCQrpmr4k29w/edit?usp=sharing LinkReview]
-
|[https://github.com/Intelligent-Systems-Phystech/2018-Project-8/raw/master/Kurashov2018Project8/Kurashov2018Project8.pdf Ибрагим Курашов], [https://github.com/Intelligent-Systems-Phystech/2018-Project-8/raw/master/Gilmutdinov2018Project8/Gilmutdinov2018Project8.pdf Наиль Гильмутдинов],
+
|[https://github.com/Intelligent-Systems-Phystech/2018-Project-8/raw/master/Kurashov2018Project8/Kurashov2018Project8.pdf Ibrahim Kurashov], [https://github.com/Intelligent-Systems-Phystech/2018-Project-8/raw/master/Gilmutdinov2018Project8/Gilmutdinov2018Project8.pdf Nail Gilmutdinov],
-
[https://github.com/Intelligent-Systems-Phystech/2018-Project-8/raw/master/Mulyukov2018Project8/Mulyukov2018Project8.pdf Альберт Мулюков],
+
[https://github.com/Intelligent-Systems-Phystech/2018-Project-8/raw/master/Mulyukov2018Project8/Mulyukov2018Project8.pdf Albert Mulyukov],
-
[https://github.com/Intelligent-Systems-Phystech/2018-Project-8/raw/master/Spivak2018Project8/Spivak2018Project8.pdf Валентин Спивак]
+
[https://github.com/Intelligent-Systems-Phystech/2018-Project-8/raw/master/Spivak2018Project8/Spivak2018Project8.pdf Valentin Spivak]
|-
|-
|9
|9
-
|Распознавание текста на основе скелетного представления толстых линий and сверточных сетей
+
|Text recognition based on skeletal representation of thick lines and convolutional networks
|[https://github.com/Intelligent-Systems-Phystech/2018-Project-9 Code], [https://docs.google.com/document/d/1vvOqLwLJSelbKBglc4LKh6XUWS5c72L0XMzyeJ20XBM/edit LiteratureReview], [https://drive.google.com/file/d/1pzfKkjVe1aP1-5ab1ewN0NMF60RJ26IA/view?usp=drivesdk Slides], [https://github.com/Intelligent-Systems-Phystech/2018-Project-9/raw/master/Lukoyanov2018Project9/main.pdf report]
|[https://github.com/Intelligent-Systems-Phystech/2018-Project-9 Code], [https://docs.google.com/document/d/1vvOqLwLJSelbKBglc4LKh6XUWS5c72L0XMzyeJ20XBM/edit LiteratureReview], [https://drive.google.com/file/d/1pzfKkjVe1aP1-5ab1ewN0NMF60RJ26IA/view?usp=drivesdk Slides], [https://github.com/Intelligent-Systems-Phystech/2018-Project-9/raw/master/Lukoyanov2018Project9/main.pdf report]
|[https://github.com/Intelligent-Systems-Phystech/2018-Project-9/raw/master/Kutsevol2018Project9/Kutsevol_Article.pdf Kutsevol Polina]
|[https://github.com/Intelligent-Systems-Phystech/2018-Project-9/raw/master/Kutsevol2018Project9/Kutsevol_Article.pdf Kutsevol Polina]
Строка 1604: Строка 1604:
|-
|-
|10
|10
-
|Сравнение нейросетевых and непрерывно-морфологических методов в задаче детекции текста
+
|Comparison of neural network and continuous-morphological methods in the problem of text detection
|[https://github.com/Intelligent-Systems-Phystech/2018-Project-10 Code], [https://docs.google.com/document/d/1Gocn0x-FfYkD_L7ZLZdULxNTBfo25OMMKPBr2-otw-w/edit?usp=sharing LinkReview], [https://t.me/joinchat/DEQDKU-oqyt8FRG4SoFh3w Discussion], [https://docs.google.com/presentation/d/17_7i0KFELxyaL-MtvVmu2ed07sg331hiMagYqNpq9Ek/edit?usp=sharing Presentation]
|[https://github.com/Intelligent-Systems-Phystech/2018-Project-10 Code], [https://docs.google.com/document/d/1Gocn0x-FfYkD_L7ZLZdULxNTBfo25OMMKPBr2-otw-w/edit?usp=sharing LinkReview], [https://t.me/joinchat/DEQDKU-oqyt8FRG4SoFh3w Discussion], [https://docs.google.com/presentation/d/17_7i0KFELxyaL-MtvVmu2ed07sg331hiMagYqNpq9Ek/edit?usp=sharing Presentation]
-
|[https://github.com/Intelligent-Systems-Phystech/2018-Project-10/blob/master/report/Gaiduchenko2018Project10/Gaiduchenko2018Project10.pdf Гайдученко Николай]
+
|[https://github.com/Intelligent-Systems-Phystech/2018-Project-10/blob/master/report/Gaiduchenko2018Project10/Gaiduchenko2018Project10.pdf Gaiduchenko Nikolay]
-
[https://github.com/Intelligent-Systems-Phystech/2018-Project-10/tree/master/report/Torlak2018Project10 Торлак Артём ]
+
[https://github.com/Intelligent-Systems-Phystech/2018-Project-10/tree/master/report/Torlak2018Project10 Torlak Artyom]
-
[https://github.com/Intelligent-Systems-Phystech/2018-Project-10/tree/master/report/Akimov2018Project10 Акимов Кирилл]
+
[https://github.com/Intelligent-Systems-Phystech/2018-Project-10/tree/master/report/Akimov2018Project10 Akimov Kirill]
-
[https://github.com/Intelligent-Systems-Phystech/2018-Project-10/tree/master/report/Mironova2018Project10 Миронова Лилия]
+
[https://github.com/Intelligent-Systems-Phystech/2018-Project-10/tree/master/report/Mironova2018Project10 Mironova Lilia]
-
[https://github.com/Intelligent-Systems-Phystech/2018-Project-10/tree/master/report/Gonchar2018Project10 Гончар Даниил]
+
[https://github.com/Intelligent-Systems-Phystech/2018-Project-10/tree/master/report/Gonchar2018Project10 Gonchar Daniel]
|
|
|-
|-
|11
|11
-
|Автоматическое построение нейросети оптимальной сложности
+
|Automatic construction of a neural network of optimal complexity
|[https://github.com/Intelligent-Systems-Phystech/2018-Project-11 Code], [https://docs.google.com/document/d/131-9Uxl4tTIMKBh7WNJuZR5MI1pHypvcb5qsYl-bAnI/edit?usp=sharing LinkReview], [https://github.com/Intelligent-Systems-Phystech/2018-Project-11/raw/master/report/report.pdf report], [https://github.com/Intelligent-Systems-Phystech/2018-Project-11/raw/master/report/pres.pdf slides]
|[https://github.com/Intelligent-Systems-Phystech/2018-Project-11 Code], [https://docs.google.com/document/d/131-9Uxl4tTIMKBh7WNJuZR5MI1pHypvcb5qsYl-bAnI/edit?usp=sharing LinkReview], [https://github.com/Intelligent-Systems-Phystech/2018-Project-11/raw/master/report/report.pdf report], [https://github.com/Intelligent-Systems-Phystech/2018-Project-11/raw/master/report/pres.pdf slides]
-
|[https://github.com/Intelligent-Systems-Phystech/2018-Project-11/blob/master/Goryan2018Project11/Goryan2018Project11.pdf Николай Горян]
+
|[https://github.com/Intelligent-Systems-Phystech/2018-Project-11/blob/master/Goryan2018Project11/Goryan2018Project11.pdf Nikolai Goryan]
-
[https://github.com/Intelligent-Systems-Phystech/2018-Project-11/tree/master/Ulitin2018Project11/Ulitin2018Project11.pdf Александр Улитин]
+
[https://github.com/Intelligent-Systems-Phystech/2018-Project-11/tree/master/Ulitin2018Project11/Ulitin2018Project11.pdf Alexander Ulitin]
-
[https://github.com/Intelligent-Systems-Phystech/2018-Project-11/blob/master/Tovkes2018Project11/Abstract.pdf Товкес Артем]
+
[https://github.com/Intelligent-Systems-Phystech/2018-Project-11/blob/master/Tovkes2018Project11/Abstract.pdf Tovkes Artem]
-
[https://github.com/Intelligent-Systems-Phystech/2018-Project-11/raw/master/Taranov2018Project-11/Taranov2018Project11.pdf Таранов Сергей]
+
[https://github.com/Intelligent-Systems-Phystech/2018-Project-11/raw/master/Taranov2018Project-11/Taranov2018Project11.pdf Taranov Sergey]
-
[https://github.com/Intelligent-Systems-Phystech/2018-Project-11/blob/master/Gubanov2018Project11/Gubanov2018Project11.pdf Губанов Сергей]
+
[https://github.com/Intelligent-Systems-Phystech/2018-Project-11/blob/master/Gubanov2018Project11/Gubanov2018Project11.pdf Gubanov Sergey]
-
[https://github.com/Intelligent-Systems-Phystech/2018-Project-11/blob/master/Krinitskiy2018Project11/Abstract.pdf Криницкий Константин]
+
[https://github.com/Intelligent-Systems-Phystech/2018-Project-11/blob/master/Krinitskiy2018Project11/Abstract.pdf Krinitsky Konstantin]
-
[https://github.com/Intelligent-Systems-Phystech/2018-Project-11/blob/master/Zabaznov2018Project11/Zabaznov2018Project11.pdf Забазнов Антон]
+
[https://github.com/Intelligent-Systems-Phystech/2018-Project-11/blob/master/Zabaznov2018Project11/Zabaznov2018Project11.pdf Zabaznov Anton]
[https://github.com/Intelligent-Systems-Phystech/2018-Project-11/blob/master/Markin2018Project11/Markin2018Project11%20(1).pdf Valery Markin]
[https://github.com/Intelligent-Systems-Phystech/2018-Project-11/blob/master/Markin2018Project11/Markin2018Project11%20(1).pdf Valery Markin]
|-
|-
|12
|12
-
|Обучение машинного перевода без параллельных текстов.
+
|Machine translation training without parallel texts.
|[https://github.com/Intelligent-Systems-Phystech/2018-Project-12 Code],
|[https://github.com/Intelligent-Systems-Phystech/2018-Project-12 Code],
[https://docs.google.com/document/d/1_5lrNNecgpiW3yObDglUAkTepVGj8ucreMhhcDV60qc/edit LinkReview],
[https://docs.google.com/document/d/1_5lrNNecgpiW3yObDglUAkTepVGj8ucreMhhcDV60qc/edit LinkReview],
-
[https://github.com/Intelligent-Systems-Phystech/2018-Project-12/raw/master/report/result.pdf Отчет],
+
[https://github.com/Intelligent-Systems-Phystech/2018-Project-12/raw/master/report/result.pdf Report],
-
[https://github.com/Intelligent-Systems-Phystech/2018-Project-12/raw/master/report/pres.pdf Слайды]
+
[https://github.com/Intelligent-Systems-Phystech/2018-Project-12/raw/master/report/pres.pdf Slides]
-
|[https://github.com/Intelligent-Systems-Phystech/2018-Project-12/raw/master/Artemenkov2018Title/Artemenkov2018Title.pdf Александр Артеменков]
+
|[https://github.com/Intelligent-Systems-Phystech/2018-Project-12/raw/master/Artemenkov2018Title/Artemenkov2018Title.pdf Alexander Artemenkov]
-
[https://github.com/Intelligent-Systems-Phystech/2018-Project-12/raw/master/Yaroshenko2018Title/Yaroshenko2018Title.pdf Ангелина Ярошенко]
+
[https://github.com/Intelligent-Systems-Phystech/2018-Project-12/raw/master/Yaroshenko2018Title/Yaroshenko2018Title.pdf Angelina Yaroshenko]
-
[https://github.com/Intelligent-Systems-Phystech/2018-Project-12/blob/master/Stroganov2018Title/Stroganov2018Title.pdf Андрей Строганов]
+
[https://github.com/Intelligent-Systems-Phystech/2018-Project-12/blob/master/Stroganov2018Title/Stroganov2018Title.pdf Andrey Stroganov]
-
[https://github.com/Intelligent-Systems-Phystech/2018-Project-12/blob/master/Skidnov2018Title/Skidnov2018Title.pdf Егор Скиднов]
+
[https://github.com/Intelligent-Systems-Phystech/2018-Project-12/blob/master/Skidnov2018Title/Skidnov2018Title.pdf Egor Skidnov]
-
[https://github.com/Intelligent-Systems-Phystech/2018-Project-12/raw/master/Borisova2018Title/Borisova2018Title.pdf Анастасия Борисова]
+
[https://github.com/Intelligent-Systems-Phystech/2018-Project-12/raw/master/Borisova2018Title/Borisova2018Title.pdf Anastasia Borisova]
-
[https://github.com/Intelligent-Systems-Phystech/2018-Project-12/blob/master/Ryabov2018Title/Ryabov2018Title.pdf Рябов Федор]
+
[https://github.com/Intelligent-Systems-Phystech/2018-Project-12/blob/master/Ryabov2018Title/Ryabov2018Title.pdf Ryabov Fedor]
-
[https://github.com/Intelligent-Systems-Phystech/2018-Project-12/tree/master/Mazurov2018Title/Abstract.pdf Мазуров Михаил]
+
[https://github.com/Intelligent-Systems-Phystech/2018-Project-12/tree/master/Mazurov2018Title/Abstract.pdf Mazurov Mikhail]
|-
|-
|13
|13
-
|Глубокое обучение для предсказания вторичной структуры РНК
+
|Deep learning for RNA secondary structure prediction
|[https://github.com/Intelligent-Systems-Phystech/2018-Project-13/tree/master/code Code]
|[https://github.com/Intelligent-Systems-Phystech/2018-Project-13/tree/master/code Code]
[https://docs.google.com/document/d/1RrIPcrVb0mEdA_hc7Ttk8thIDnDvtBXgyriIxwpYzzM/edit Link Review]
[https://docs.google.com/document/d/1RrIPcrVb0mEdA_hc7Ttk8thIDnDvtBXgyriIxwpYzzM/edit Link Review]
-
|[https://github.com/Intelligent-Systems-Phystech/2018-Project-13/blob/master/Dorokhin2018Problem13/Dorokhin2018Problem13.pdf Дорохин Семён]
+
|[https://github.com/Intelligent-Systems-Phystech/2018-Project-13/blob/master/Dorokhin2018Problem13/Dorokhin2018Problem13.pdf Dorokhin Semyon]
-
[https://github.com/Intelligent-Systems-Phystech/2018-Project-13/tree/master/Pastukhov2018Project13 Пастухов Сергей]
+
[https://github.com/Intelligent-Systems-Phystech/2018-Project-13/tree/master/Pastukhov2018Project13 Pastukhov Sergey]
-
[https://github.com/Intelligent-Systems-Phystech/2018-Project-13/raw/master/Pikunov2018Problem13/first.pdf Пикунов Андрей]
+
[https://github.com/Intelligent-Systems-Phystech/2018-Project-13/raw/master/Pikunov2018Problem13/first.pdf Pikunov Andrey]
-
[https://github.com/Intelligent-Systems-Phystech/2018-Project-13/blob/master/Nesterova2018Project13/tutorial.pdf Нестерова Ирина]
+
[https://github.com/Intelligent-Systems-Phystech/2018-Project-13/blob/master/Nesterova2018Project13/tutorial.pdf Nesterova Irina]
-
[https://github.com/Intelligent-Systems-Phystech/2018-Project-13/blob/master/Kurilovich2018Problem13/Kurilovich2018Problem13.pdf Курилович Анна]
+
[https://github.com/Intelligent-Systems-Phystech/2018-Project-13/blob/master/Kurilovich2018Problem13/Kurilovich2018Problem13.pdfKurilovich Anna]
[https://t.me/joinchat/DE_WxRAo9v0lIKxGyc07Kg chat]
[https://t.me/joinchat/DE_WxRAo9v0lIKxGyc07Kg chat]
|-
|-
Строка 1657: Строка 1657:
|-
|-
|15
|15
-
|Формулировка and решение задачи оптимизации, сочетающей классификацию and регрессию, для оценки энергии связывания белка and маленьких молекул
+
|Formulation and solution of an optimization problem combining classification and regression to estimate the binding energy of a protein and small molecules
|[https://github.com/Intelligent-Systems-Phystech/2018-Project-15/Code Code]
|[https://github.com/Intelligent-Systems-Phystech/2018-Project-15/Code Code]
[https://docs.google.com/document/d/1Be2O0My8KWwOKLo8bFMmF8tPMCFGCK4zUVArurrPeNQ/edit Link Review]
[https://docs.google.com/document/d/1Be2O0My8KWwOKLo8bFMmF8tPMCFGCK4zUVArurrPeNQ/edit Link Review]
-
|[https://github.com/Intelligent-Systems-Phystech/2018-Project-15/tree/master/Merkulova2018Title Меркулова Анастасия]
+
|[https://github.com/Intelligent-Systems-Phystech/2018-Project-15/tree/master/Merkulova2018Title Merkulova Anastasia]
-
[https://github.com/Intelligent-Systems-Phystech/2018-Project-15/tree/master/Plumite2018Title Плумите Эльвира]
+
[https://github.com/Intelligent-Systems-Phystech/2018-Project-15/tree/master/Plumite2018Title Plumite Elvira]
-
[https://github.com/Intelligent-Systems-Phystech/2018-Project-15/tree/master/Zhiboedova2018Title Жибоедова Анастасия]
+
[https://github.com/Intelligent-Systems-Phystech/2018-Project-15/tree/master/Zhiboedova2018Title Zhiboyedova Anastasia]
[https://vk.me/join/AJQ1d2J3jQq0jJ50G5VAoioS chat]
[https://vk.me/join/AJQ1d2J3jQq0jJ50G5VAoioS chat]
|-
|-
|16
|16
-
|Оценка оптимального объема выборки для исследований в медицине
+
|Estimation of the optimal sample size for research in medicine
|[https://github.com/Intelligent-Systems-Phystech/2018-Project-16 Code]
|[https://github.com/Intelligent-Systems-Phystech/2018-Project-16 Code]
[https://docs.google.com/document/d/1yqnjgMUheHQUp8AAQPqqy9jTJhhzzd_6wvnHY7GF1Fk/edit?usp=sharing Link Review]
[https://docs.google.com/document/d/1yqnjgMUheHQUp8AAQPqqy9jTJhhzzd_6wvnHY7GF1Fk/edit?usp=sharing Link Review]
-
|[https://github.com/Intelligent-Systems-Phystech/2018-Project-16/blob/master/report/Kharatyan2018Project16/report.pdf Артемий Харатян],
+
|[https://github.com/Intelligent-Systems-Phystech/2018-Project-16/blob/master/report/Kharatyan2018Project16/report.pdf Artemy Kharatyan],
-
[https://github.com/Intelligent-Systems-Phystech/2018-Project-16/raw/master/Mikheev2018Project16 Михаил Михеев],
+
[https://github.com/Intelligent-Systems-Phystech/2018-Project-16/raw/master/Mikheev2018Project16 Mikhail Mikheev],
-
[https://github.com/Intelligent-Systems-Phystech/2018-Project-16/tree/master/Evgin2018Project16 Евгин Александр],
+
[https://github.com/Intelligent-Systems-Phystech/2018-Project-16/tree/master/Evgin2018Project16 Evgin Alexander],
-
[https://github.com/Intelligent-Systems-Phystech/2018-Project-16/tree/master/Seppar2018Project16 Сеппар Александр],
+
[https://github.com/Intelligent-Systems-Phystech/2018-Project-16/tree/master/Seppar2018Project16 Seppar Alexander],
-
[https://github.com/Intelligent-Systems-Phystech/2018-Project-16/tree/master/Konoplev2018Project16 Коноплёв Максим],
+
[https://github.com/Intelligent-Systems-Phystech/2018-Project-16/tree/master/Konoplev2018Project16 Konoplyov Maxim],
-
[https://github.com/Intelligent-Systems-Phystech/2018-Project-16/tree/master/Murlatov2018Project16 Мурлатов Станислав],
+
[https://github.com/Intelligent-Systems-Phystech/2018-Project-16/tree/master/Murlatov2018Project16 Murlatov Stanislav],
-
[https://github.com/Intelligent-Systems-Phystech/2018-Project-16/tree/master/Makarenko2018Project16 Макаренко Степан]
+
[https://github.com/Intelligent-Systems-Phystech/2018-Project-16/tree/master/Makarenko2018Project16 Makarenko Stepan]
|-
|-
|17
|17
-
|Прогнозирование намерений. Исследование свойств локальных моделей при пространственном декодировании сигналов головного мозга
+
|Intention forecasting. Investigation of the properties of local models in the spatial decoding of brain signals
|[https://github.com/Intelligent-Systems-Phystech/2018-Project-17/tree/master/code Code],
|[https://github.com/Intelligent-Systems-Phystech/2018-Project-17/tree/master/code Code],
[https://docs.google.com/document/d/1j6laGt-zTP3lTm1v0Ozev3dKxivYciq9TOWfmn5sAIU/edit?usp=sharing LinkReview],
[https://docs.google.com/document/d/1j6laGt-zTP3lTm1v0Ozev3dKxivYciq9TOWfmn5sAIU/edit?usp=sharing LinkReview],
[https://github.com/Intelligent-Systems-Phystech/2018-Project-17/raw/master/report/Presentation.pdf Presentation]
[https://github.com/Intelligent-Systems-Phystech/2018-Project-17/raw/master/report/Presentation.pdf Presentation]
-
|[https://github.com/Intelligent-Systems-Phystech/2018-Project-17/blob/master/Bolobolova2018Project17/Bolobolova2018Project17.pdf Наталия Болоболова],
+
|[https://github.com/Intelligent-Systems-Phystech/2018-Project-17/blob/master/Bolobolova2018Project17/Bolobolova2018Project17.pdf Natalia Bolobolova],
[https://github.com/Intelligent-Systems-Phystech/2018-Project-17/raw/master/Samokhina2018Project17/Samokhina2018Problem17.pdf Alina Samokhina],
[https://github.com/Intelligent-Systems-Phystech/2018-Project-17/raw/master/Samokhina2018Project17/Samokhina2018Problem17.pdf Alina Samokhina],
-
[https://github.com/Intelligent-Systems-Phystech/2018-Project-17/raw/master/Shiyanov2018Project17/Shiyanov2018Project17.pdf Шиянов Вадим]
+
[https://github.com/Intelligent-Systems-Phystech/2018-Project-17/raw/master/Shiyanov2018Project17/Shiyanov2018Project17.pdf Shiyanov Vadim]
|-
|-
|18
|18
-
|Прогнозирование намерений. Построение оптимальной модели декодирования сигналов при моделировании нейрокомпьютерного интерфейса.
+
|Intention forecasting. Building an optimal signal decoding model for modeling a brain-computer interface.
|[https://github.com/Intelligent-Systems-Phystech/2018-Project-18 Code],
|[https://github.com/Intelligent-Systems-Phystech/2018-Project-18 Code],
[https://docs.google.com/document/d/1b-CjunKY5nkZUK0Zfur0nKyQPaY2eWqht7kMcMQd-J8/edit LinkReview],
[https://docs.google.com/document/d/1b-CjunKY5nkZUK0Zfur0nKyQPaY2eWqht7kMcMQd-J8/edit LinkReview],
[https://github.com/Intelligent-Systems-Phystech/2018-Project-18/raw/master/Presentation-v1.pdf Presentation],
[https://github.com/Intelligent-Systems-Phystech/2018-Project-18/raw/master/Presentation-v1.pdf Presentation],
[https://github.com/Intelligent-Systems-Phystech/2018-Project-18/raw/master/_________________________.pdf Article]
[https://github.com/Intelligent-Systems-Phystech/2018-Project-18/raw/master/_________________________.pdf Article]
-
|[https://github.com/Intelligent-Systems-Phystech/2018-Project-18/raw/master/Nasedkin2018Project18/Nasedkin2018Project18.pdf Иван Наседкин], [https://github.com/Intelligent-Systems-Phystech/2018-Project-18/raw/master/Latypova2018Project18/Latypova.pdf Галия Латыпова],
+
|[https://github.com/Intelligent-Systems-Phystech/2018-Project-18/raw/master/Nasedkin2018Project18/Nasedkin2018Project18.pdf Ivan Nasedkin], [https://github.com/Intelligent-Systems-Phystech/2018-Project-18/raw/master/Latypova2018Project18/Latypova.pdf Galiya Latypova],
-
[https://github.com/Intelligent-Systems-Phystech/2018-Project-18/raw/master/Sukhodolskiy2018Project18/Sukhodolskiy2018Project18.pdf Нестор Суходольский],
+
[https://github.com/Intelligent-Systems-Phystech/2018-Project-18/raw/master/Sukhodolskiy2018Project18/Sukhodolskiy2018Project18.pdf Nestor Sukhodolsky],
-
[https://github.com/Intelligent-Systems-Phystech/2018-Project-18/raw/master/Shemenev2018Project18/Shemenev2018Project18.pdf Александр Шеменев]
+
[https://github.com/Intelligent-Systems-Phystech/2018-Project-18/raw/master/Shemenev2018Project18/Shemenev2018Project18.pdf Alexander Shemenev]
-
[https://github.com/Intelligent-Systems-Phystech/2018-Project-18/raw/master/Borodulin2018Project18/Borodulin2018Project18.pdf Иван Бородулин],
+
[https://github.com/Intelligent-Systems-Phystech/2018-Project-18/raw/master/Borodulin2018Project18/Borodulin2018Project18.pdf Ivan Borodulin],
|-
|-
|19
|19
-
| Исследование зависимости качества распознавания онтологических объектов от глубины гипонимии.
+
| Investigation of the dependence of the quality of recognition of ontological objects on the depth of hyponymy.
|[https://github.com/Intelligent-Systems-Phystech/2018-Project-19 Code],
|[https://github.com/Intelligent-Systems-Phystech/2018-Project-19 Code],
[https://github.com/ddvika/2018-Project-19/raw/master/report/final_report.pdf Report],
[https://github.com/ddvika/2018-Project-19/raw/master/report/final_report.pdf Report],
[https://docs.google.com/document/d/1OeMPgVMi72AbHOKsKsUDs6ggMdNL2UT0liycgmYrnLk/edit LinkReview], [https://github.com/ddvika/2018-Project-19/raw/master/report/presentation19project.pdf Presentation]
[https://docs.google.com/document/d/1OeMPgVMi72AbHOKsKsUDs6ggMdNL2UT0liycgmYrnLk/edit LinkReview], [https://github.com/ddvika/2018-Project-19/raw/master/report/presentation19project.pdf Presentation]
-
|[https://github.com/Intelligent-Systems-Phystech/2018-Project-19/raw/master/Rezyapkin2018Project19/RezyapkinPaper.pdf Вячеслав Резяпкин], [https://github.com/Intelligent-Systems-Phystech/2018-Project-19/raw/master/Russkin2018Project19/Russkin2018Project19.pdf Алексей Русскин],
+
|[https://github.com/Intelligent-Systems-Phystech/2018-Project-19/raw/master/Rezyapkin2018Project19/RezyapkinPaper.pdf Вячеслав Резяпкин], [https://github.com/Intelligent-Systems-Phystech/2018-Project-19/raw/master/Russkin2018Project19/Russkin2018Project19.pdf Alexey Russkin],
-
[https://github.com/ddvika/2018-Project-19/raw/master/Dochkina2018Project19/Dochkina2018Project19.pdf Виктория Дочкина],
+
[https://github.com/ddvika/2018-Project-19/raw/master/Dochkina2018Project19/Dochkina2018Project19.pdf Victoria Dochkina],
-
[https://github.com/Intelligent-Systems-Phystech/2018-Project-19/raw/master/Kuznetsov2018Project19/KuznetsovMiron.pdf Мирон Кузнецов],
+
[https://github.com/Intelligent-Systems-Phystech/2018-Project-19/raw/master/Kuznetsov2018Project19/KuznetsovMiron.pdf Miron Kuznetsov],
-
[https://github.com/Intelligent-Systems-Phystech/2018-Project-19/raw/master/Yarmoshik2018Project19/Yarmoshik_article.pdf Ярмошик Демьян]
+
[https://github.com/Intelligent-Systems-Phystech/2018-Project-19/raw/master/Yarmoshik2018Project19/Yarmoshik_article.pdf Yarmoshyk Demyan]
|-
|-
|20
|20
-
| Сравнение качества end-to-end обучаемых моделей в задаче ответа на вопросы в диалоге с учетом контекста
+
| Comparison of the quality of end-to-end trainable models in the task of answering questions in a dialogue, taking into account the context
|[https://github.com/Intelligent-Systems-Phystech/2018-Project-20 Code]
|[https://github.com/Intelligent-Systems-Phystech/2018-Project-20 Code]
[https://docs.google.com/document/d/1GQmJ6I2fIBchikR-44DcmMD4H-58j3_wuIchNK49Zrs/edit LinkReview]
[https://docs.google.com/document/d/1GQmJ6I2fIBchikR-44DcmMD4H-58j3_wuIchNK49Zrs/edit LinkReview]
-
[https://github.com/Intelligent-Systems-Phystech/2018-Project-20/blob/master/Ryakin2018problem20/Ryakin2018project20.pdf Отчет],
+
[https://github.com/Intelligent-Systems-Phystech/2018-Project-20/blob/master/Ryakin2018problem20/Ryakin2018project20.pdf Report],
[https://github.com/Intelligent-Systems-Phystech/2018-Project-20/blob/master/presentation/QuAC.pdf Presentation]
[https://github.com/Intelligent-Systems-Phystech/2018-Project-20/blob/master/presentation/QuAC.pdf Presentation]
-
|[https://github.com/Intelligent-Systems-Phystech/2018-Project-20/raw/master/Agafonov2018probem20/article/Agafonov2018project20.pdf Агафонов Алексей], [https://github.com/Intelligent-Systems-Phystech/2018-Project-20/blob/master/Ryakin2018problem20/Ryakin2018project20.pdf Рякин Илья],[https://github.com/Intelligent-Systems-Phystech/2018-Project-20/blob/master/Litvinenko2018problem20/Litvinenko2018project20.pdf Литвиенко Владимир],
+
|[https://github.com/Intelligent-Systems-Phystech/2018-Project-20/raw/master/Agafonov2018probem20/article/Agafonov2018project20.pdf Agafonov Alexey], [https://github.com/Intelligent-Systems-Phystech/2018-Project-20/blob/master/Ryakin2018problem20/Ryakin2018project20.pdf Ryakin Ilya],[https://github.com/Intelligent-Systems-Phystech/2018-Project-20/blob/master/Litvinenko2018problem20/Litvinenko2018project20.pdf Litvinenko Vladimir],
-
[https://github.com/Intelligent-Systems-Phystech/2018-Project-20/blob/master/Khokhlov2018problem20/Khokhlov2018project20.pdf Хохлов Иван],
+
[https://github.com/Intelligent-Systems-Phystech/2018-Project-20/blob/master/Khokhlov2018problem20/Khokhlov2018project20.pdf Khokhlov Ivan],
-
[https://github.com/Intelligent-Systems-Phystech/2018-Project-20/blob/master/Velikovsky2018project20/Velikovsky2018project20.pdf Великовский Никита],
+
[https://github.com/Intelligent-Systems-Phystech/2018-Project-20/blob/master/Velikovsky2018project20/Velikovsky2018project20.pdf Velikovsky Nikita],
-
[https://github.com/Intelligent-Systems-Phystech/2018-Project-20/blob/master/Anufrienko2018project20/Anufrienko2018project20.pdf Ануфриенко Олег]
+
[https://github.com/Intelligent-Systems-Phystech/2018-Project-20/blob/master/Anufrienko2018project20/Anufrienko2018project20.pdf Anufrienko Oleg]
|-
|-
|21
|21
-
|Методы выпуклой оптимизации высокого порядка
+
|High order convex optimization methods
|[https://github.com/Intelligent-Systems-Phystech/2018-Project-21/tree/master/code Code],
|[https://github.com/Intelligent-Systems-Phystech/2018-Project-21/tree/master/code Code],
[https://docs.google.com/document/d/1jF1Hkqbn2e7BnuguTzYuRPp43Y5MbMP36MlWwFVkf6U/edit LinkReview],
[https://docs.google.com/document/d/1jF1Hkqbn2e7BnuguTzYuRPp43Y5MbMP36MlWwFVkf6U/edit LinkReview],
[https://github.com/Intelligent-Systems-Phystech/2018-Project-21/blob/master/report/presentation_results.pdf Slides]
[https://github.com/Intelligent-Systems-Phystech/2018-Project-21/blob/master/report/presentation_results.pdf Slides]
-
|[https://github.com/Intelligent-Systems-Phystech/2018-Project-21/raw/master/Selikhanovych2018Title/Selikhanovych2018Title.pdf Селиханович Даниил],
+
|[https://github.com/Intelligent-Systems-Phystech/2018-Project-21/raw/master/Selikhanovych2018Title/Selikhanovych2018Title.pdf Selikhanovich Daniel],
-
[https://github.com/Intelligent-Systems-Phystech/2018-Project-21/blob/master/Sokolov2018Title/Sokolov2018Title.pdf Соколов Игорь]
+
[https://github.com/Intelligent-Systems-Phystech/2018-Project-21/blob/master/Sokolov2018Title/Sokolov2018Title.pdf Sokolov Igor]
|-
|-
|23
|23
Строка 1774: Строка 1774:
|[https://github.com/Intelligent-Systems-Phystech/2018-Project-26 Code],
|[https://github.com/Intelligent-Systems-Phystech/2018-Project-26 Code],
[https://docs.google.com/document/d/1er3SgPu9bBBWkLk1yVev-9Ue42BOPapOkLn6sL0GAGA/edit?usp=sharing LinkReview],
[https://docs.google.com/document/d/1er3SgPu9bBBWkLk1yVev-9Ue42BOPapOkLn6sL0GAGA/edit?usp=sharing LinkReview],
-
[https://github.com/Intelligent-Systems-Phystech/2018-Project-26/raw/master/Project26.pdf Слайды],
+
[https://github.com/Intelligent-Systems-Phystech/2018-Project-26/raw/master/Project26.pdf Slides],
[https://github.com/Vitaly-Protasov/Project26/raw/master/text.pdf Текст]
[https://github.com/Vitaly-Protasov/Project26/raw/master/text.pdf Текст]
|[https://github.com/Intelligent-Systems-Phystech/2018-Project-26/raw/master/Zainulina2018Project26/Zainulina2018Project26.pdf Эльвира Зайнулина]
|[https://github.com/Intelligent-Systems-Phystech/2018-Project-26/raw/master/Zainulina2018Project26/Zainulina2018Project26.pdf Эльвира Зайнулина]
Строка 1793: Строка 1793:
|Cross-Language Document Extractive Summarization with Neural Sequence Model
|Cross-Language Document Extractive Summarization with Neural Sequence Model
|[https://github.com/Intelligent-Systems-Phystech/2018-Project-29/tree/master/code Code],
|[https://github.com/Intelligent-Systems-Phystech/2018-Project-29/tree/master/code Code],
-
[https://docs.google.com/spreadsheets/d/1mDOp2KnXI9dH8_QYdj4fY-pMBWnqXfECkFUEg244O38/edit#gid=0 Linkreview], [https://github.com/Intelligent-Systems-Phystech/2018-Project-29/raw/master/report/Task29_Report.pdf Отчет], [https://github.com/Intelligent-Systems-Phystech/2018-Project-29/raw/master/report/CrossLang_Summa.pdf Слайды]
+
[https://docs.google.com/spreadsheets/d/1mDOp2KnXI9dH8_QYdj4fY-pMBWnqXfECkFUEg244O38/edit#gid=0 Linkreview], [https://github.com/Intelligent-Systems-Phystech/2018-Project-29/raw/master/report/Task29_Report.pdf Report], [https://github.com/Intelligent-Systems-Phystech/2018-Project-29/raw/master/report/CrossLang_Summa.pdf Slides]
|[https://github.com/Intelligent-Systems-Phystech/2018-Project-29/raw/master/Zakharov2018Title/Zakharov2018Article.pdf Павел Захаров]
|[https://github.com/Intelligent-Systems-Phystech/2018-Project-29/raw/master/Zakharov2018Title/Zakharov2018Article.pdf Павел Захаров]
[https://github.com/Intelligent-Systems-Phystech/2018-Project-29/blob/master/Kvasha2018Title/article.pdf Павел Кваша]
[https://github.com/Intelligent-Systems-Phystech/2018-Project-29/blob/master/Kvasha2018Title/article.pdf Павел Кваша]

Версия 20:52, 16 февраля 2023

Шаблон:Main article

Содержание

2021

Author Topic Links Consultant Letters Reviewer
Grebenkova Olga (example) Variational optimization of deep learning models with model complexity control LinkReview

GitHub Paper Slides Video

Oleg Bakhteev AILP+UXBR+HCV+TEDWSS Shokorov Vyacheslav

Review

Pilkevich Anton Existence conditions for hidden feedback loops in recommender systems GitHub

LinkReview Paper Slides Video

Khritankov Anton AILB*P-X+R-B-H1CVO*T-EM*H1WJSF Gorpinich Maria

Review

Antonina Kurdyukova| Determining the phase and disorder of human movement based on the signals of wearable devices LinkReview

GitHub Paper Slides Video

Georgy Kormakov AILB*PXBRH1CVO*TEM*WJSF Pilkevich Anton

Review

Yakovlev Konstantin A differentiable search algorithm for model architecture with control over its complexity LinkReview

GitHub Paper Slides Video

Grebenkova Olga AILB*PXBRH1CVO*TEM*WJSF Pyrau Vitaly

Review

Gorpinich Maria Trajectory Regularization of Deep Learning Model Parameters Optimization Based on Knowledge Distillation LinkReview

GitHub Paper Slides Video

Oleg Bakhteev AILB*P+XBRC+VH1O*TEM*WJSF Kulakov Yaroslav

Review

Alexandr Tolmachev Analysis of the QPFS Feature Selection Method for Generalized Linear Models LinkReview

GitHub Paper Slides Video

Aduenko Alexander AILB*PXB-R-H1CVO*TEM*WJSF Antonina Kurdyukova

Review

Kulakov Yaroslav BCI: Selection of consistent models for building a neural interface LinkReview

GitHub Paper Slides Video

Isachenko Roman AILB*PXBRH1CVO*TEM*WJ0SF Zverev Egor

Review

Pyrau Vitaly Experimental comparison of several problems of operational planning of biochemical production. LinkReview

GitHub Paper Slides Video

Trenin Sergey Alekseevich AILB*PXBRH1CVO*TEM*WJSF Yakovlev Konstantin

Review

Bazhenov Andrey Search for the boundaries of the iris by the method of circular projections LinkReview

GitHub Paper Slides Video

Matveev Ivan Alekseevich AILB*PXB0RH1CVO*TEM*WJ0SF
Zverev Egor Learning co-evolution information with natural language processing for protein folding problem LinkReview

GitHub Paper Slides Video

Sergei Grudinin, Ilya Igashov AILB*PXBRH1CVO*TEM*WJSF Alexandr Tolmachev

Review

Gorchakov Vyacheslav Importance Sampling for Chance Constrained Optimization LinkReview

Github Paper Video

Yuri Maksimov AILB*PX0B0R0H1C0V0O*0T0E0M*0W0JS0F Bazhenov Andrey

Review

Lindemann Nikita Training with an expert for a sample with many domains LinkReview

Github Paper Slides

Andrey Grabovoi AILPXBRH1C0V0O*TE0M*0W0J0SF0

Task 74

  • Name: Existence conditions for hidden feedback loops in recommender systems
  • Problem description: In recommender systems, the effect of artificially inadvertently limiting the user's choice due to the adaptation of the model to his preferences (echo chamber / filter bubble) is known. The effect is a special case of hidden feedback loops. (see - Analysis H.F.L.). It is expressed in the fact that by recommending the same objects of interest to the user, the algorithm maximizes the quality of its work. The problem is a) lack of variety b) saturation / volatility of the user's interests.
  • Task: It is clear that the algorithm does not know the interests of the user and the user is not always honest in his choice. Under what conditions, what properties of the learning algorithm and dishonesty (deviation of the user's choice from his interests) will the indicated effect be observed? Clarification. The recommendation algorithm gives the user a_t objects to choose from. The user selects one of them c_t from Bernoulli from the model of interest mu(a_t) . Based on the user's choice, the algorithm changes its internal state w_t and gives the next set of objects to the user. On an infinite horizon, you need to maximize the total reward sum c_t. Find the conditions for the existence of an unlimited growth of user interest in the proposed objects in a recommender system with the Thomson Sampling (TS) MAB algorithm under conditions of noisy user choice c_t. Without noise, it is known that there is always unlimited growth (in the model) [1].
  • Data: are created as part of the experiment (simulation model) by analogy with the article [1], external data is not required.
  • References:
    1. Jiang, R., Chiappa, S., Lattimore, T., György, A. and Kohli, P., 2019, January. Degenerate feedback loops in recommender systems. In Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society (pp. 383-390).
    2. Khritankov, A. (2021). Hidden Feedback Loops in Machine Learning Systems: A Simulation Model and Preliminary Results. In International Conference on Software Quality (pp. 54-65). Springer, Cham.
    3. Khritankov A. (2021). Hidden feedback loop experiment demo. https://github.com/prog-autom/hidden-demo
  • Basic algorithm: The initial mathematical model of the phenomenon under study is described in the article [1]. The method of experimental research is in the article [2]. The base source code is available at [3]
  • Solution: It is necessary to derive conditions for the existence of positive feedback for the Thomson Sampling Multi-armed Bandit algorithm based on the known theoretical properties of this algorithm. Then check their performance in the simulation model. For verification, a series of experiments is performed with the study of parameter ranges and the estimation of the error (variance) of the simulation. The results are compared with the previously constructed mathematical model of the effect. There is an implementation of the experiment system that can be improved for this task.
  • Novelty: The studied positive feedback effect is observed in real and model systems and is described in many publications as an undesirable phenomenon. There is his model for the limited case of the absence of noise in the user's actions, which is not implemented in practice. Under the proposed conditions, Task has not previously been posed and not solved for recommender systems. For the regression problem, the solution is known.
  • Authors: Expert, consultant - Anton Khritankov

Task 77

  • Name: Determining the phase and disorder of human movement by signals from wearable devices
  • Task: A wide class of periodic movements of a person or an animal is investigated. It is required to find the beginning and end of the movement. It is required to understand when one type of movement ends and another begins. For this, the Task of segmentation of time series is solved. The phase trajectory of one movement is constructed and its actual dimension is found. The purpose of the work is to describe a method for finding the minimum dimension of the phase space. By repetition of the phase, segment the periodic actions of a person. It is also necessary to propose a method for extracting the zero phase in a given space for a specific action. Bonus: find the discord in the phase trajectory and indicate the change in the type of movement. Bonus 2: do this for different phone positions by proposing invariant transformation models.
  • Data: The data consists of time series read from a three-axis accelerometer with an explicit periodic class (walking, running, walking up and down stairs, etc.). It is possible to get your own data from a mobile device, or get model data from the dataset UCI HAR
  • References:
    1. A. P. Motrenko, V. V. Strijov. Extracting fundamental periods to segment biomedical signals // Journal of Biomedical and Health Informatics, 2015, 20(6).P. 1466–1476
1.(Сегментация временных рядов с периодическими действиями: решалась Task сегментации с использованием фазового пространства фиксированной размерности.) PDFURL
    2. A.D. Ignatov, V. V. Strijov. Human activity recognition using quasi-periodic time series collected from a single triaxial accelerometer. // Multimedia Tools and Applications, 2015, P. 1–14.
( Классификация человеческой активности с помощью сегментации временных рядов
: исследовались классификаторы над получаемыми сегментами.) PDFURL
    3. Grabovoy, A.V., Strijov, V.V. Quasi-Periodic Time Series Clustering for Human Activity Recognition. Lobachevskii J Math 41, 333–339 (2020). (Сегментация временных рядов на квазипериодические сегменты
: исследовались методы сегментации с использованием анализа главных компонент and перехода в фазовое пространство.) Text Slides DOI
  • Basic algorithm: The basic algorithm is described in 1 and 3 works, code here, work code 3 author.
  • Solution: It is proposed to consider various dimensionality reduction algorithms and compare different spaces in which the phase trajectory is constructed. Develop an algorithm for finding the minimum dimension of the phase space in which the phase trajectory has no self-intersections up to the standard deviation of the reconstructed trajectory.
  • Novelty: In Motrenko's article, the space dimension is equal to two. This shortcoming must be corrected. The phase trajectory must not intersect itself. And if we can distinguish one type of movement from another within one period (switched from running to a step and realized this within one and a half steps), it will be great.
  • Authors: 
consultants: Kormakov G.V., Tikhonov D.M., Expert Strizhov V.V.

Task 78

  • Name: Importance Sampling for Scenario Approximation of Chance Constrained Optimization
  • Task: Optimization problems with probabilistic constraints are often encountered in engineering practice. For example, the Task of minimizing energy generation in energy networks, with (randomly fluctuating) renewable energy sources. In this case, it is necessary to comply with safety restrictions: voltages at generators and consumers, as well as currents on the lines, must be less than certain thresholds. However, even in the simplest situations, the Task cannot be resolved exactly. The best-known approach is the chance constrained optimization methods, which often give a good approximation. An alternative approach is sampling the network operation modes and solving the problem on the data set of the classification problem: separating bad modes from good ones with a given error of the second kind. At the same time, for a sufficiently accurate solution, a very large amount of data is required, which often makes the problem numerically inefficient. We suggest using “importance sampling” to reduce the number of scenarios. Importance sampling consists of substituting a sample from a nominal solution, which often carries no information since all bad events are very rare, with a synthetic distribution that samples the sample in a neighborhood of bad events.            
  • Problem statement: find the minimum of a convex function (price) under probabilistic constraints (the probability of exceeding a certain threshold for a system of linear/quadratic functions is small) and numerically show the effectiveness of sampling in this problem.
  • Data: Data is available in the pypower and matpower packages as csv files.
  • References: The proposed algorithms are based on 3 articles:
    1. Owen, Maximov, Chertkov. Importance Sampling for the Union of Rare Events with Applications to Power Systems LINK
    2. A. Nemirovski. On safe tractable approximations of chance constraints [1]
    3. S. Tong, A. Subramanyam, and Vi. Rao. Optimization under rare chance constraints. LINK
    4. In addition, the authors of the problem have a draft of the article, in which you need to add a numerical part.
  • Basic algorithm: A list of basic algorithms is provided in this lecture LINK
  • Solution: in numerical experiments, you need to compare the sample size requirements for standard methods (scenario approximation) and using importance sampling to obtain a solution of comparable quality (and inverse Task, having equal sample lengths, compare the quality of the solution)
  • Novelty: Task has long been known in the community and scenario approximation is one of the main methods. At the same time, importance sampling helps to significantly reduce the number of scenarios. We have recently received a number of interesting results on how to calculate optimal samplers, with their use the complexity of the problem will be significantly reduced
  • Authors: Expert – Yuri Maksimov, consultant – Yuri Maksimov and Alexander Lukashevich, student.

Task 79

  • Name: Improving Bayesian Inference in Physics Informed Machine Learning
  • Task: Machine learning methods are currently widely used in physics, in particular, in solving turbulence problems or analyzing the stability of physical networks. At the same time, the key issue is which modes to choose for training models. A frequent choice is a sequence of points that uniformly covers the admissible set. However, often such sequences are not very informative, especially if analytical methods give a region where the system is guaranteed to be stable. The problem proposes several methods of sampling: allowing to take into account this information. Our goal is to compare them and find the one that requires the smallest sample size (empirical comparison).
  • Data: The experiment is proposed to be carried out on model and real data. The simulation experiment consists in analyzing the stability of (slightly non-linear) differential equations (synthetic data is self-generated). The second experiment is to analyze the stability of energy systems (data from matpower, pypower, GridDyn).
  • References:
    1. Art Owen. Quasi Monte Carlo Sampling. LINK 
    2. Jian Cheng & Marek J. Druzdzel. Computational Investigation of Low-Discrepancy Sequences in Simulation Algorithms for Bayesian Networks [2]
    3. A. Owen, Y Maximov, M. Chertkov. Importance Sampling for the Union of Rare Events with Applications to Power Systems [3]
    4. Polson and Solokov. Deep Learning: A Bayesian Perspective [4]
    5. In addition: the authors of the problem have a draft work on this topic
  • Basic algorithm: The basic algorithm we are improving is Quasi Monte Carlo (QMC, LINK ). Task to construct low discrepancy sequences not covering the polyhedral region and the region given by the intersection of the quadratic constraints. Another algorithm with which we need a comparison:

E. Gryazina, B. Polyak. Random Sampling: a Billiard Walk Algorithm LINK и с алгоритмами типа Hit and Run [5]

  • Solution: sampling methods by importance, in particular the extension of the approach (Boy, Ryi, 2014) and (Owen, Maximov, Chertkov, 2017) and their applications to ML/DL for physical problems
  • Novelty: in a significant reduction in sample complexity and the explicit use of existing and analytical results and learning to solve physical problems, before that ML approaches and analytical solutions were mostly parallel courses
  • Authors: Expert Yuri Maksimov, consultant Yuri Maksimov and Alexander Lukashevich, student.

 

Task 81

  • Name: NAS — Generation and selection of neural network architectures
  • Task: The task of choosing the optimal neural network architecture is set as the Task of sampling the vector of structural parameters. The optimality criterion is defined in terms of the accuracy, complexity and stability of the model. The sampling procedure itself consists of two steps: generating a new structure and rejecting this structure if it does not satisfy the optimality criterion. It is proposed to explore various methods of sampling. The formulation of the problem of choosing the optimal structure is described in Potanin-1
  • Data: : Two separate sets are offered as data. The first one consists of one element, this is the popular MNIST dataset. Pros - is a strong and generally accepted baseline, was used as a benchmark for the WANN article, quite large (multi-class classification). The second set is a set of datasets for the regression task. Size varies from very small to quite large. Here is a link to the dataset and laptop to download the data data.
  • References:
    1. Potanin - 1
    2. Potanin - 2. One more work, the text is given to the interested student, but without publication.
    3. Strizhov Factory laboratory Error function
    4. Informtica
    5. WANN
    6. DARTS
    7. Symbols
    8. NEAT
  • Basic algorithm: Closest project, and its code. Actual code from consultant.
  • Solution: A number of experiments have already been performed, where sampling is performed by a genetic algorithm. Acceptable results have been obtained. It is proposed to analyze and improve them. Namely, to distinguish two modules: generation and deviation and compare several types of sampling. Basic - Importance sampling, desirable - Metropolis-Hastings (or even Metropolis-Langevin) sampling. Since the genetic algorithm is considered by us as a process with jumps, it is proposed to take this into account when designing the sampling procedure. The bonus of MH is that it has a Bayesian interpretation. The first level of Bayesian inference as applied to MH is described in [Informatica]. It is required either to rewrite it in terms of the distribution of structural parameters, or to describe both levels in general, moving the structural parameters to the second level (by the way, approximately the same will be in the Aduenko problem).
  • Novelty: Neural networks excel at the tasks of computer vision, reinforcement learning, and natural language processing. One of the main goals of neural networks is to perform well tasks that are currently solved exclusively by humans, that is, natural human neural networks. Artificial neural networks still work very differently from natural neural networks. One of the main differences is that natural neural networks evolve over time, changing the strength of connections and their architecture. Artificial neural networks can adjust the strength of connections using weights, but cannot change their architecture. Therefore, the task of choosing the optimal structures of neural networks for specific tasks seems to be an important step in the development of the capabilities of neural network models.
  • Authors: consultant Mark Potanin, Expert Strizhov V.V.

Task 82

  • Name: Training with an Expert for a sample with many domains.
  • Task: The Task of approximating a multi-domain sample by a single multi-model - a mixture of Experts is considered. As data, it is supposed to use a sample that contains several domains. There is no domain label for each object. Each domain is approximated by a local model. The paper considers a two-stage Task optimization based on the EM algorithm.
  • Data: Samples of reviews from the Amazon site for different types of goods are used as data. It is supposed to use a linear model as a local model, and use tf-idf vectors within each domain as an indicative description of reviews.
  • References:
    1. https://arxiv.org/pdf/1806.00258.pdf
    2. http://www.mysmu.edu/faculty/jingjiang/papers/da_survey.pdf
    3. https://dl.acm.org/doi/pdf/10.1145/3400066
  • Basic algorithm and Solution: The basic solution is presented here. The work uses the expert mixture method for the Multi-Soruce domain adaptation problem. The code for the article is available link.
  • Novelty: At the moment, in machine learning there are more and more tasks related to data that are taken from different sources. In this case, there are samples that consist of a large number of domains. At the moment, there is no complete theoretical justification for constructing mixtures of local models for approximating such types of samples.
  • Authors: Grabovoi A.V., Strizhov V.V.

Task 17

  • Name: BCI: Selection of consistent models for building a neural interface
  • Task: When building brain-computer interface systems, simple, stable models are used. An important step in building an interface is such a model is an adequate choice of model. A wide range of models is considered: linear, simple neural networks, recurrent networks, transformers. The peculiarity of the problem is that when making a prediction, it is required to model not only the initial signal taken from the cerebral cortex, but also the target signal taken from the limbs. Thus, two models are required. In order for them to work together, a space of agreements is being built. It is proposed to explore the properties of this space and the properties of the resulting forecast (neural interface) on various pairs of models.
  • Data: ECoG/EEG brain signal data sets.
    1. Need ECoG (dataset 25 contains EEG, EOG and hand movements) http://bnci-horizon-2020.eu/database/data-sets
    2. neyrotycho — our old data.
  • References::
    1. Yaushev F.Yu., Isachenko R.V., Strizhov V.V. Latent space matching models in the forecasting problem // Systems and Means of Informatics, 2021, 31(1). PDF
    2. Isachenko R.V. Choice of a signal decoding model in high-dimensional spaces. Manuscript, 2021. PDF
    3. Isachenko R.V. Choice of a signal decoding model in high-dimensional spaces. Slides, 2020. [6]
    4. Isachenko R.V., Vladimirova M.R., Strijov V.V. Dimensionality reduction for time series decoding and forecasting problems // DEStech Transactions on Computer Science and Engineering, 2018, 27349 : 286-296. PDF
    5. Isachenko R.V., Strijov V.V. Quadratic Programming Optimization with Feature Selection for Non-linear Models // Lobachevskii Journal of Mathematics, 2018, 39(9) : 1179-1187. PDF
    6. Motrenko A.P., Strijov V.V. Multi-way feature selection for ECoG-based brain-computer interface // Expert Systems with Applications, 2018, 114(30) : 402-413. PDF
    7. Eliseyev A., Aksenova T. Stable and artifact-resistant decoding of 3D hand trajectories from ECoG signals using the generalized additive model //Journal of neural engineering. – 2014.
  • Basic algorithm: Described in the first work. The code is available. In that work, the data is two parts of an image. In our work, the signal of the brain and the movement of the hands. SuperTask: to finish the first job. Also the code and works here.
  • Solution: The case is considered when the initial data are heterogeneous: the spaces of the independent and target variables are of different nature. It is required to build a predictive model that would take into account the dependence in the source space of the independent variable, as well as in the space of the target variable. It is proposed to investigate the accuracy, complexity and stability of pairs of various models. Since the inverse Task is solved when building a forecast, it is required to build inverse transformations for each model. To do this, you can use both basic techniques (PLS) and streams.
  • Novelty: Analysis of the prediction and latent space obtained by a pair of heterogeneous models.
  • Authors: Consultant Roman Isachenko, Expert Strizhov V.V.

Task 69

  • Name: Graph Neural Network in Reaction Yield prediction
  • Task: There are disconnected graphs of source molecules and products in a chemical reaction. The yield of the main product in the reaction is known. It is required to design an algorithm that predicts yield by solving the regression task on given disconnected graphs.
  • Data: Database of reaction from US patents [7]
  • References::
    • [8] A general overview.
    • [9] Relational Graph Convolution Neural Network
    • [10] Transformer architecture
    • [11] Graph neural network learning for chemical compounds synthesis
  • Basic algorithm: Transformer model. The input sequence is a SMILES representation of the source and product molecules.
  • Solution: A pipeline for working with disconnected graphs is proposed. The pipeline includes the construction of extended graph with molecule and reaction representation, Relational Graph Convolution Neural Network, Encoder of Transformer. The method is applied to solve yield predictions.
  • Novelty: A solution for regression problem on the given disconnected graph is constructed; the approach demonstrates better performance compared with other solutions
  • Authors:: Nikitin Filipp, Isayev Olexandr, Strizhov V.V.

Task 84

  • Name: Trajectory Regularization of Deep Learning Model Parameters Optimization Based on Knowledge Distillation
  • Task: The problem of optimizing the parameters of a deep learning model is considered. The case is considered when the responses of a more complex model (teacher model) are available during optimization. The classical approach to solving such a problem is learning based on the responses of a complex model (knowledge distillation). Assignment of hyperparameters is made empirically based on the results of the model on delayed sampling. In this paper, we propose to consider a modification of the approach to knowledge distillation, in which the coefficient of significance of the distilling term, as well as its gradients, act as hyperparameters. Both of these groups of parameters allow you to adjust the optimization of the model parameters. To optimize hyperparameters, it is proposed to consider the optimization problem as a two-level optimization problem, where at the first level of optimization the Task of optimizing the model parameters is solved, and at the second level the Task of optimizing hyperparameters is approximately solved by the value of the loss function on the delayed sample.
  • Data: Sampling of CIFAR-10 images
  • References:
    1. Distillation of knowledge
    2. Hyperparameter Optimization in a Bilevel Problem: Greedy Method
    3. Hyperparameter Optimization in a Bilevel Problem: Comparison of Approaches
    4. Meta Optimization: neural network instead of optimization operator
  • Basic algorithm: Model optimization without distillation and with standard distillation approach
  • Solution: Using a two-level problem for model optimization. The combination of gradients for both terms is processed by a separate model (LSTM)
  • Novelty: A new approach to model distillation will be proposed to significantly improve the performance of models trained in privileged information mode. It is also planned to study the dynamics of changes in hyperparameters in the optimization process.
  • Authors: Oleg Bakhteev, Strizhov V.V.

Task 85

  • Name: A differentiable search algorithm for model architecture with control over its complexity
  • Task: The problem of choosing the structure of a deep learning model with a predetermined complexity is considered. It is required to propose a method for searching for a model that allows controlling its complexity with low computational costs.
  • Data: MNIST, CIFAR
  • References:
    1. Grebenkova O.S., Oleg Bakhteev, Strizhov V.V.Variational optimization of a deep learning model with complexity control // Informatics and its applications, 2021, 15(2). PDF
    2. DARTS
    3. hypernets
  • Basic algorithm: DARTS
  • Solution: The proposed method is to use a differentiable neural network architecture search algorithm (DARTS) with parameter complexity control using a hypernet.
  • Novelty: The proposed method allows you to control the complexity of the model, in the process of searching for an architecture without additional heuristics.
  • Authors: Oleg Bakhteev, Grebenkova O. S.

Task 86

  • Name: Learning co-evolution information with natural language processing for protein folding problem
  • Task: One of the most essential problems in structural bioinformatics is protein fold recognition since the relationship between the protein amino acid sequence and its tertiary structure is revealed by protein folding. A specific protein fold describes the distinctive arrangement of secondary structure elements in the nearly-infinite conformation space, which denotes the structural characteristics of a protein molecule.
  • Problem description:: request
  • Authors: Sergei Grudinin, Maria Kadukova.

Task 87

  • Name: Bayesian choice of structures of generalized linear models
  • Task: The work is devoted to testing methods for feature selection. It is assumed that the sample under study contains a significant number of multicollinear features. Multicollinearity is a strong correlation between the features selected for analysis that jointly affect the target vector, which makes it difficult to estimate regression parameters and identify the relationship between features and the target vector. There is a set of time series containing the readings of various sensors that reflect the state of the device. The readings of the sensors correlate with each other. It is necessary to choose the optimal set of features for solving the forecasting problem.
  • Novelty: One of the most preferred feature selection algorithms has been published. It uses structural parameters. But there is no theoretical justification. It is proposed to build a theory by describing and analyzing various functions of a priori distribution of structural parameters. In works on the search for structures of neural networks, there is also no clear theory and a list of a priori assumptions.
  • Data: Multivariate time series with readings from various sensors from paper 4, for starters, all samples from paper 1.
  • References: Keywords: bootstrap aggregation, Belsley method, vector autoregression.
    1. Katrutsa A.M., Strijov V.V. Comprehensive study of feature selection methods to solve multicollinearity problem according to evaluation criteria // Expert Systems with Applications, 2017, 76 : 1-11. PDF
    2. Katrutsa A.M., Strijov V.V. Stresstest procedure for feature selection algorithms // Chemometrics and Intelligent Laboratory Systems, 2015, 142 : 172-183.  PDF
    3. Strizhov V.V. Error function in regression recovery problems // Factory laboratory. material diagnostics, 2013, 79(5) : 65-73. PDF
    4. Зайцев А.А., Strizhov V.V., Tokmakova A.A. Estimation of hyperparameters of regression models by the maximum likelihood method // Information technologies, 2013, 2 : 11-15. PDF
    5. Kuznetsov M.P., Tokmakova A.A., Strijov V.V. Analytic and stochastic methods of structure parameter estimation // Informatica, 2016, 27(3) : 607-624. PDF
    6. Катруца А.М., Strizhov V.V. The problem of multicollinearity in the selection of features in regression problems // Information technologies, 2015, 1 : 8-18.  PDF
    7. Нейчев Р.Г., Катруца А.М., Strizhov V.V. Selection of the optimal set of features from a multicorrelated set in the forecasting problem. Zavodskaya Lab. material diagnostics, 2016, 82(3) : 68-74. PDF
  • Basic algorithm: Described in Reference 1: Quadratic Programming for QPFS Feature Selection. Code from Roman Isachenko.
  • Solution: It is proposed to consider the structural parameters used in QPFS at the second level of Bayesian inference. Introduce informative a priori distributions of parameters and structural parameters. Compare different a priori assumptions.
  • Novelty: Statistical Analysis of Structural Parameter Space and Visualization
  • Authors: Alexander Aduenko — consultant, Strizhov V.V.

Task 88

  • Name: Search for the boundaries of the iris by the method of circular projections
  • Task: Given a monochrome bitmap of the eye, см. examples. The approximate position of the center of the pupil is also known. The word "approximate" means that the calculated center of the pupil is no more than half of its true radius from the true one. It is necessary to determine the approximate positions of the circles approximating the pupil and iris. The algorithm must be very fast.
  • Data: About 200 thousand eye images. For each, the position of the true circles is marked - for the purpose of training and testing the method being created.
  • Basic algorithm: To speed up work with the image, it is proposed to aggregate data using circular projections of brightness. Circular projection is a function that depends on the radius, the value of which P(r) is equal to the integral of the directed image brightness gradient over a circle of radius r (or along an arc of a circle). Example for one arc (right quadrant) and for four arcs. Having built some circular projections, based on them, you can try to determine the position of the inner and outer borders of the iris (ring) using heuristics and / or a neural network. It is interesting to evaluate the capabilities of the neural network in this task.
  • References: Matveev I.A. Detection of Iris in Image By Interrelated Maxima of Brightness Gradient Projections // Applied and Computational Mathematics. 2010. V.9. N.2. P.252-257 PDF
  • Author: Matveev I.A.

Task 53

  • Name: Solution of an optimization problem combining classification and regression to estimate the binding energy of a protein and small molecules.
  • Task: The goal of the problem is to solve an optimization problem with classification and regression loss functions applied to biological data.
  • Data: Approximately 12,000 complexes of proteins with small molecules. For classification, for each of them there is 1 correct position in space and 18 incorrect ones generated, for regression, each complex corresponds to the value of the binding constant (proportional to energy). The main descriptors are histograms of distributions of distances between different atoms.
  • References::
  • Basic algorithm: In the classification task, we used an algorithm similar to linear SVM, whose relationship with the energy estimate, which is outside the scope of the classification task, is described in the article https://hal.inria.fr/hal-01591154/. For MSE, there is already a formulated dual Task as a regression loss function, with the implementation of which we can start.
  • Solution: The first step is to solve the problem with the MSE in the loss function using a solver that is convenient for you. The main difficulty may be the large dimensionality of the data, but they are sparse. Further it will be possible to change the wording of the problem.
  • Novelty: Many models used to predict the interactions of proteins with ligands are "retrained" for some task. For example, models that are good at predicting binding energies may be poor at selecting a protein-binding molecule from a variety of non-binding ones, and models that are good at determining the correct geometry of the complex may be poor at predicting energies. In this problem, we propose to consider a new approach to combat such overfitting, since the combination of classification and regression loss functions seems to us to be a very natural regularization.
  • Authors: Sergei Grudinin, Maria Kadukova.

Task 75

  • Name: Alignment of image elements using metric models.
  • Task: Character set specified. Each symbol is represented by one file - an image. Image pixel size may vary. All images are known to belong to the same class, such as faces, letters, flowers, or cars. (A more complicated option is to one class, which we are studying and noise classes.) It is known that each image can be combined with another with the help of an equalizing transformation up to noise, or up to some average image. (This image may or may not be present in the sample). This leveling transformation is specified in the base case by a neural network, and in the proposed case - by a parametric transformation from some given class (the first is a special case of the second). The aligned image is compared with the original one using the distance function. If the distance between two images is statistically significant, it is concluded that the images belong to the same class. It is required to 1) propose an adequate model of the alignment transformation that takes into account the assumptions about the nature of the image (for example, only rotation and proportional scaling), 2) propose a distance function, 3) propose a method for finding the average image.
  • Data: Synthetic and real 1) pictures - faces and symbols with rotation and stretch transformation, 2) faces and cars with 3D rotation transformation with 2D projection. Synthetic images are proposed to be created manually using 1) photographs of a sheet of paper, 2) photographs of the surface of the drawing on a balloon.
  • References:
    1. support work - alignment of images using 2D DTW,
    2. support work - alignment of images using neural networks,
    3. DTW alignment work in 2D,
    4. parametric alignment work.
  • Basic algorithm: from work 1.
  • Solution: In the attached file pdf.
  • Novelty: Instead of multidimensional image alignment, parametric alignment is proposed.
  • Authors: Alexey Goncharov, Strizhov V.V.

Task 80

  • Name: Detection of correlations between activity in social networks and capitalization of companies
  • Task: At present, the significant impact on stock quotes, company capitalization and the success or failure of an IPO depends on social factors such as public opinion expressed on social media. A recent notable example is the change in GameStore quotes caused by the surge in activity on Reddit. Our task at the first stage is to identify quotes between the shares of companies in different segments and activity in social networks. That is, it is necessary to identify correlations between significant changes in the company's capitalization and previous bursts (positive or negative) of its discussion in social networks. That is, it is necessary to find the minimum of the loss function when restoring the dependence in various classes of models (parametrics, neural networks, etc.). This Task is part of a large project to analyze the analysis of markets and the impact of social factors on risks (within a team of 5-7 professors), which will lead to a series of publications sufficient to defend a dissertation.
  • Data: Task has a significant engineering context, the data is downloads from quotes on the Moscow Exchange, as well as NYT and reddit data (crawling and parsing is done by standard tools). The student working on this task must have strong engineering skills and a desire to engage in both the practice of machine learning and the engineering parts of the task.
  • References:
    1. Paul S. Adler and Seok-Woo Kwon. Social Capital: Prospects for a new Concept. [12]   
    2. Kim and Hastak. Social network analysis: Characteristics of online social networks after a disaster LINK
    3. Baumgartner, Jason, et al. "The pushshift reddit dataset." Proceedings of the International AAAI Conference on Web and Social Media. Vol. 14. 2020. [13]
  • Basic algorithm: The basic algorithms are LSTM and Graph neural networks.
  • Solution: Let's start by using LSTM, then try some of its standard extensions
  • Novelty: In this area, there are a lot of economic, model solutions, but the accuracy of these solutions is not always high. The use of modern ML/DL models is expected to significantly improve the quality of the solution.
  • Authors: Expert Yuri Maksimov, consultant Yuri Maksimov, student.

Task 88b

  • Name: Finding a Pupil in an Eye Image Using the Luminance Projection Method
  • Task: Given a monochrome bitmap of the eye, examples. It is necessary to determine the approximate coordinates of the center of the pupil. The word "approximate" means that the calculated pupil center must lie inside a circle centered at the pupil's true center and half the true radius. The algorithm must be very fast.
  • Data: About 200 thousand eye images. For each, the position of the true circle is marked - for the purpose of training and testing the method being created.

Basic algorithm: To speed up work with the image, it is proposed to aggregate data using brightness projections. Image brightness is a function of two discrete arguments. Its projection on the horizontal axis is equal to. Similarly, projections are constructed on axes with an inclination. Having built several projections (two, four), based on them, you can try to determine the position of the pupil (compact dark area) using heuristics and / or a neural network. It is interesting to evaluate the capabilities of the neural network in this task.

  • References: Zhi-Hua Zhou, Xin Geng Projection functions for eye detection // Pattern Recognition. 2004. V.37ю N.5. P.1049-1056. PDF
  • Author: Matveev I.A.

Task 88c

  • Name: Searching for a century in an image as a parabolic contour using the projection method.
  • Task: Given a monochrome bitmap of the eye, examples. It is necessary to find the contour of the upper eyelid as a parabola, that is, to determine the parameters.
  • Data: About 200 thousand eye images. For some (about 2500), a human expert marked the position of a parabola that approximates the eyelid.
  • Basic algorithm: The first step is pre-processing the image with a vertical gradient filter with further binarization, below is a typical result. There are various options for the next step. For example, if the coordinates of the pupil are known, you can set the region of interest (from above) and in it, using the selected points, construct a parabola by approximation using the least squares method. An example result is given below. More subtle methods are possible, such as finding a parabola using the Hough transform (see Wikipedia). Another way is to use projective methods (Radon transform). The main idea: after specifying the coefficient , apply a coordinate transformation to the image, as a result of which all parabolas of the form formula turn into lines of the form , then, given the coefficient , apply the coordinate transformation where , after which the oblique lines of the formula form become horizontal, which are easy to determine, for example, by horizontal projection (by summing the values in the rows of the matrix of the resulting image. If the coefficients are guessed correctly, the perabola representing the eyelid will give a clear maximum in the projection. By going through the formula (having a physical meaning), you can find those that give the maximum projection value, and consider that the desired parabola - eyelid.
  • References: Wikipedia, articles "Hough Transform", "Radon Transform".
  • Author: Matveev I.A.

Task 62

  • Name: Construction of a method for dynamic alignment of multidimensional time series, resistant to local signal fluctuations.
  • Task: In the process of working with multidimensional time series, the situation of close proximity of sensors corresponding to different measurement channels is common. As a result, small signal shifts in space can lead to signal peak fixation by neighboring sensors, which leads to significant differences in measurements in terms of L2 distance.
    Thus, small signal shifts lead to significant fluctuations in the readings of the sensors. The Task of constructing a distance function between points of time series that is resistant to noise generated by small spatial signal shifts is considered. It is necessary to consider the problem in the approximation of the presence of a map of the location of the sensors.
  • Data:
  • References::
  • Basic algorithm: L2 distance between a pair of measurements.
  • Solution: Use the DTW distance function between two multidimensional time series. Two time axes are aligned, while inside the DTW functional, the distance between the i-th and j-th measurements is chosen such that it is resistant to local “shifts” of the signal. It is required to offer such functionality. The basic solution is L2, the improved solution is DTW between the i-th and j-th dimensions (dtw inside dtw).
    You can suggest some modification, for example, the distance between the hidden layers of the autoencoder for points i and j.
  • Novelty: A method for aligning multidimensional time series is proposed that takes into account small signal fluctuations in space.
  • Authors: Expert - Strizhov V.V., consultants - Gleb Morgachev, Alexey Goncharov.

Task 58

  • Name: Transformation of the Gerchberg-Saxton algorithm using Bayesian neural networks. (or Neural network approach in the problem of phase search for images from the European synchrotron)
  • Task: The aim of the project is to improve the quality of resolution of images of nanosized objects obtained in the laboratories of the European Synchrotron Radiation Foundation.
  • Data: Contact an advisor for data (3GB).

References::

  • Basic algorithm: The transition from direct space to reciprocal space occurs using the Fourier transform. The Fourier transform is a linear transformation. Therefore, it is proposed to approximate it with a neural network. For example, an autoencoder for modeling forward and inverse Fourier transforms.
  • Solution: Transformation of the Gerchberg-Saxton algorithm using Bayesian neural networks. Use of information on physical limitations and expertise.
  • Novelty: Use of information about physical constraints and expert knowledge in the construction of the error function.
  • Authors:: Experts Sergei Grudinin, Yuri Chushkin, Strizhov V.V., consultant Mark Potanin

Task 63

  • Name: Hierarchical alignment of time sequences.
  • Task: Task of alignment of sequences of difficult events is considered. An example is the complex behavior of a person: when considering data from IMU sensors, one can put forward a hypothesis: there is an initial signal, there are aggregates of “elementary actions” and there are aggregates of “actions” of a person. Each of the indicated levels of abstraction can be distinguished and operated on exactly by it.
    In order to accurately recognize the sequence of actions, it is possible to use metric methods (for example, DTW, as a method that is resistant to time shifts). For a more accurate quality of timeline alignment, it is possible to carry out alignment at different levels of abstraction.
    It is proposed to explore such a hierarchical approach to sequence alignment, based on the possibility of applying alignment algorithms to objects of different structures, having a distance function on them.
  • References:
  • Basic algorithm: classic DTW.
  • Solution: It is proposed to perform the transition from one level of abstraction to another by using convolutional and recurrent neural networks. Then the object at the lower level of abstraction is the original signal. At the second level - a signal from the hidden layer of the model (built on the objects of the lower level), the dimension of which is much less, and the upper layer - a signal from the hidden layer of the model (built on the objects of the middle level).
    In this case, DTW is calculated separately between the lower , between the middle and between the upper levels, but the formation of objects for calculating the distance is carried out taking into account the alignment path between the objects of the previous level.
    This method is considered as a way to increase the interpretability of the alignment procedure and the accuracy of the action classification in connection with the transition to higher-level patterns. In addition, a significant increase in speed is expected.
  • Novelty: The idea of aligning time sequences simultaneously at several levels of abstraction is proposed. The method should significantly improve the interpretability of alignment algorithms and increase their speed.
  • Authors: Strizhov V.V. - Expert, Gleb Morgachev, Alexey Goncharov - consultants.

Task 57

  • Name:Additive Regularization and in the Tasks of Privileged Learning in Solving the Problem of Predicting the State of the Ocean
  • Task: There is a sample of data from ocean buoys, it is required to predict the state of the ocean at different points in time.
  • Data: The buoys provide data on wave height, wind speed, wind direction, wave period, sea level pressure, air temperature and sea surface temperature with a resolution of 10 minutes to 1 hour.
  • References:
  • Basic algorithm: Using a simple neural network.
  • Solution:Adding to the basic algorithm (a simple neural network) a system of differential equations. Explore the properties of the parameter space of teacher and student according to the preferred approach.
  • Novelty: Investigation of the parameter space of the teacher and the student and their change. It is possible to set up separate teacher and student models and track the change in their parameters in the optimization process - variance, change in the quality of the student when adding teacher information, complexity.
  • Authors:: Strizhov V.V., Mark Potanin


Task 52

  • Name: Predicting the quality of protein models using spherical convolutions on 3D graphs.
  • Task: The purpose of this work is to create and study a new convolution operation on three-dimensional graphs in the framework of solving the problem of assessing the quality of three-dimensional protein models (task regression on graph nodes).
  • Data: Models generated by CASP competitors are used (http://predictioncenter.org).
  • References::
    • [19] More about the task.
    • [20] Relational inductive biases, deep learning, and graph networks.
    • [21] Geometric deep learning: going beyond euclidean data.
  • Basic algorithm: As a basic algorithm, we will use a neural network based on the graph convolution method, which is generally described in [22].
  • Solution: The presence of a peptide chain in proteins makes it possible to uniquely introduce local coordinate systems for all graph nodes, which makes it possible to create and apply spherical filters regardless of the graph topology.
  • Novelty: In the general case, graphs are irregular structures, and in many graph learning tasks, the sample objects do not have a single topology. Therefore, the existing operations of convolutions on graphs are greatly simplified or do not generalize to different topologies. In this paper, we propose to consider a new method for constructing a convolution operation on three-dimensional graphs, for which it is possible to uniquely choose local coordinate systems associated with each node.
  • Authors: Sergei Grudinin, Ilya Igashov.

Task 44+

  • Name: Early prediction of sufficient sample size for a generalized linear model.
  • Task: The problem of experiment planning is investigated. The Task of estimating a sufficient sample size according to the data is solved. The sample is assumed to be simple. It is described by an adequate model. Otherwise, the sample is generated by a fixed probabilistic model from a known class of models. The sample size is considered sufficient if the model is restored with sufficient confidence. It is required, knowing the model, to estimate a sufficient sample size at the early stages of data collection.
  • Цель: On a small simple iid sample, predict the error on a replenished large one. The predictive model is smooth monotonic in two derivatives. The choice of model is a complete enumeration or genetics. The model depends on the reduced (explore) covariance matrix of the GLM parameters.
  • Data: For the computational experiment, it is proposed to use classical samples from the UCI repository. Link to selections https://github.com/ttgadaev/SampleSizeEstimation/tree/master/datasets
  • References::
    1. Overview of Methods, Motivation and Problem Statement for Sample Size Estimation
    2. http://svn.code.sf.net/p/mlalgorithms/code/PhDThesis/.
    3. Bootstrap method. https://projecteuclid.org/download/pdf_1/euclid.aos/1.

Bishop, C. 2006. Pattern Recognition and Machine Learning. Berlin: Springer. 758 p.

  • Basic algorithm: We will say that the sample size is sufficient if the log-likelihood has a small variance, on a sample of size m calculated using the bootstrap.

We are trying to approximate the dependence of the average value of log-likelihood and its variance on the sample size.

  • Solution: The methods described in the review are asymptotic or require a deliberately large sample size. The new method should be to predict volume in the early stages of experiment design, i.e. when data is scarce.
  • Authors: consultant - Malinovsky G., Strizhov V.V. (Expert)


Task 12

  • Name: Machine translation training without parallel texts.
  • Task: The Task of building a text translation model without the use of parallel texts is considered, i.e. pairs of identical sentences in different languages. This Task occurs when building translation models for low-resource languages (that is, languages for which there is not much data in the public domain).
  • Data: A selection of articles from Wikipedia in two languages.
  • References::
    • [23] Unsupervised Machine Translation Using Monolingual Corpora Only
    • [24] Sequence to sequence.
    • [25] Autoencoding.
    • [26] Training with Monolingual Training Data.
  • Basic algorithm: Unsupervised Machine Translation Using Monolingual Corpora Only.
  • Solution: As a translation model, it is proposed to consider a combination of two auto-encoders, each of which is responsible for presenting sentences in one of the languages. The models are optimized in such a way that the latent spaces of autoencoders for different languages match. As an initial representation of sentences, it is proposed to consider their graph description obtained using multilingual ontologies.
  • Novelty: A method for constructing a translation model is proposed, taking into account graph descriptions of sentences.
  • Authors: Oleg Bakhteev, Strizhov V.V.,


Task 8

  • Name: Generation of features using locally approximating models (Classification of human activities according to measurements of fitness bracelets).
  • Task: It is required to check the feasibility of the hypothesis about the simplicity of sampling for the generated features. Features are the optimal parameters of approximating models. Moreover, the entire sample is not simple and requires a mixture of models to approximate it. Explore the information content of the generated features - the parameters of the approximating models trained on the segments of the original time series. According to the measurements of the accelerometer and gyroscope, it is required to determine the type of activity of the worker. It is assumed that the time series of measurements contain elementary movements that form clusters in the space of time series descriptions. The characteristic duration of the movement is seconds. Time series are labeled with activity type labels: work, leisure. The typical duration of activity is minutes. It is required to restore the type of activity according to the description of the time series and cluster.
  • Data: WISDM accelerometer time series (Time series (library of examples), section Accelerometry).
    • WISDM (Kwapisz, J.R., G.M. Weiss, and S.A. Moore. 2011. Activity recognition using cell phone accelerometers. ACM SigKDD Explorations Newsletter. 12(2):74–82.), USC-HAD или сложнее. Данные акселерометра (Human activity recognition using smart phone embedded sensors: A Linear Dynamical Systems method, W Wang, H Liu, L Yu, F Sun - Neural Networks (IJCNN), 2014)
  • References::
    • Motrenko A.P., Strijov V.V. Extracting fundamental periods to segment human motion time series // Journal of Biomedical and Health Informatics, 2016, Vol. 20, No. 6, 1466 - 1476. URL
    • Карасиков М.Е., Strizhov V.V. Classification of time series in the space of parameters of generating models // Informatics and its applications, 2016.URL
    • Kuznetsov M.P., Ivkin N.P. Algorithm for Classifying Accelerometer Time Series by Combined Feature Description // Machine Learning and Data Analysis. 2015. T. 1, No. 11. C. 1471 - 1483. URL
    • Isachenko R.V., Strizhov V.V. Metric learning in Taskx multiclass classification of time series // Informatics and its applications, 2016, 10(2) : 48-57. URL
    • Zadayanchuk A.I., Popova M.S., Strizhov V.V. Choosing the optimal model for classifying physical activity based on accelerometer measurements // Information technologies, 2016. URL
    • Ignatov A., Strijov V. Human activity recognition using quasiperiodic time series collected from a single triaxial accelerometer // Multimedia Tools and Applications, 2015, 17.05.2015 : 1-14. URL
  • Basic algorithm: Basic algorithm described in [Karasikov, Strizhov: 2016] and [Kuznetsov, Ivkin: 2014].
  • Solution: It is required to build a set of locally approximating models and choose the most adequate ones. Find the optimal segmentation method and the optimal description of the time series. Construct a metric space of descriptions of elementary motions.
  • Novelty: A standard for building locally approximating models has been created. The connection of two characteristic times of the description of human life, the combined statement of the problem.
  • Authors: Expert - Strizhov V.V., consultants - Alexandra Galtseva, Danil Sayranov.

2020

Author Topic Links Consultant Letters Reviewer
Grebenkova Olga Variational optimization of deep learning models with model complexity control LinkReview

GitHub Paper Slides Video

Oleg Bakhteev AILP+UXBR+HCV+TEDWS Shokorov Vyacheslav

Review

Shokorov Vyacheslav Text recognition based on skeletal representation of thick lines and convolutional networks LinkReview

GitHub Paper Slides Video

Denis Ozherelkov AIL Grebenkova Olga

Review

Filatov Andrey Intention forecasting. Investigation of the properties of local models in the spatial decoding of brain signals LinkReview

GitHub Paper Slides Video

Valery Markin AILPHUXBRCVTEDWS Hristolubov Maxim

Review

Islamov Rustem Analysis of the properties of an ensemble of locally approximating models LinkReview

GitHub Paper Slides Video

Andrey Grabovoi AILPHUXBRCVTEDWS Gunaev Ruslan

Review

Zholobov Vladimir Early prediction of sufficient sample size for a generalized linear model. LinkReview

GitHub Paper Slides Video

Grigory Malinovsky AILPHUXBRCVTEWSF Vayser Kirill

Review

Vayser Kirill Additive regularization and its meta parameters when choosing the structure of deep learning networks LinkReview

GitHub Paper Slides Video

Mark Potanin AILP+HUX+BRCV+TEDWS Zholobov Vladimir

Review

Bishuk Anton Solution of an optimization problem combining classification and regression to estimate the binding energy of a protein and small molecules. LinkReview

GitHub Paper Slides Video

Maria Kadukova AILPHUXBRCVTEDH Filippova Anastasia
Filippova Anastasia Step detection for IMU navigation via deep learning LinkReview

GitHub Paper Slides EnglishPaper Video

Tamaz Gadaev AIL0PUXBRCVSF Bishuk Anton

Review

Savelev Nickolay Distributed optimization under Polyak-Loyasievich conditions LinkReview

GitHub Paper Slides Video

A. N. Beznosikov AILPHUXBRCVTEDWS Khary Alexandra

Review

Khary Alexandra Theoretical validity of the application of metric classification methods using dynamic alignment (DTW) to spatiotemporal objects. LinkReview

GitHub Paper Slides Video

Gleb Morgachev, Alexey Goncharov AILPHUXBRCVTEDCWS Savelev Nickolay

Review

Hristolubov Maxim Generating features using locally approximating models (Classification of human activities by measurements of fitness bracelets) LinkReview

GitHub Paper Slides Video

Alexandra Galtseva, Danil Sayranov AILPH Filatov Andrey

Review

Mamonov Kirill Nonlinear ranking of exploratory information search results. LinkReview

GitHub Paper Slides Video

Maxim Eremeev AILPHU+XBRC+V+TEDHWJSF
Pavlichenko Nikita Predicting the quality of protein models using spherical convolutions on 3D graphs. LinkReview

GitHub Paper Slides Video

Sergei Grudinin, Ilya Igashov AILPUXBRHCVTEDH
Sodikov Mahmud, Skachkov Daniel Agnostic neural networks Code

Paper Slides Video

Radoslav Neichev AILPHUXBRC+VTEDHWJSF Kulagin Petr

Review

Gunaev Ruslan Graph Neural Network in Reaction Yield prediction LinkReview

Github Paper Slides Video

Philip Nikitin AILPUXBRHCVTEDHWSF Islamov Rustem

Review

Yaushev Farukh Investigation of ways to match models by reducing the dimension of space LinkReview

Github Paper Slides Video

Roman Isachenko AILPUXBRHCVTEDHWJS Zholobov Vladimir

Review

Task 51

  • Name: Analysis of the properties of an ensemble of locally approximating models.
  • Task: In this paper, we consider the task of constructing a universal approximator --- a multimodel, which consists of a given finite set of local models. Each local model approximates a connected region in feature space. It is assumed that the set of local models cover the entire space of objects. A convex combination of local models is considered as an aggregating function. As the coefficients of the convex combination, we consider a function depending on the object --- the gate function.
  • Required: To construct an algorithm for optimizing the parameters of local models and parameters of the gate function. It is required to propose a metric in the space of objects, a metric in the space of models.
  • Data:
    1. Synthetically generated data.
    2. Energy consumption forecasting data. It is proposed to use the following models as local models: working day, day off. (Energy Consumption, Turk Electricity Consumption German Spot Price).
  • References::
    1. Overview of methods for estimating sample size
    2. Vorontsov's lectures on compositions
    3. Vorontsov's lectures on compositions
    4. Esen Y.S., Wilson J., Gader P.D. Twenty Years of Mixture of Experts. IEEE Transactions on Neural Networks and Learning Systems. 2012. Issues. 23. No 8. P. 1177-1193.
    5. Pavlov K.V. Selection of multilevel models in Tasks classification, 2012
  • Basic algorithm: As a basic algorithm, it is proposed to use a two-level optimization problem, where local models are optimized at one iteration and at the next iteration, the parameters of the gate function are optimized.
  • Authors: Grabovoi A.V. (consultant), Strizhov V.V. (Expert)

Task 54

It is necessary to determine the approximate coordinates of the center of the pupil. The word "approximate" means that the calculated pupil center must lie inside a circle centered at the pupil's true center and half the true radius. The algorithm must be very fast.

  • Data: About 200 thousand eye images. For each, the position of the true circle is marked - for the purpose of training and testing the method being created.
  • Basic algorithm: To speed up work with the image, it is proposed to aggregate data using brightness projections. Image brightness is a function of two discrete arguments I(x, y). Its projection onto the horizontal axis is P(x)=\sum \limits_y I(x,y). Similarly, projections are constructed on axes with an inclination. Having built several projections (two, four), based on them, you can try to determine the position of the pupil (compact dark area) using heuristics and / or a neural network. It is interesting to evaluate the capabilities of the neural network in this task.
  • References:: Zhi-Hua Zhou, Xin Geng Projection functions for eye detection // Pattern Recognition. 2004. V.37ю N.5. P.1049-1056. https://doi.org/10.1016/j.patcog.2003.09.006
  • Authors: Matveev I.A.

Task 55

  • Name: Search for the boundaries of the iris by the method of circular projections
  • Task: Given a monochrome bitmap of the eye, see examples (https://cloud.mail.ru/public/2DBu/5c6F6e3LC). The approximate position of the center of the pupil is also known. The word "approximate" means that the calculated center of the pupil is no more than half of its true radius from the true one. It is necessary to determine the approximate positions of the circles approximating the pupil and iris. The algorithm must be very fast.
  • Data: About 200 thousand eye images. For each, the position of the true circle is marked - for the purpose of training and testing the method being created.
  • Basic algorithm: To speed up work with the image, it is proposed to aggregate data using circular projections of brightness. Circular projection is a function that depends on the radius, the value of which P(r) is equal to the integral of the directed image brightness gradient over a circle of radius r (or along an arc of a circle). Example for one arc (right quadrant) and for four arcs. Having built some circular projections, based on them, you can try to determine the position of the inner and outer borders of the iris (ring) using heuristics and / or a neural network. It is interesting to evaluate the capabilities of the neural network in this task.
  • References:: Matveev I.A. Detection of Iris in Image By Interrelated Maxima of Brightness Gradient Projections // Applied and Computational Mathematics. 2010. V.9. N.2. P.252-257. https://www.researchgate.net/publication/228396639_Detection_of_iris_in_image_by_interrelated_maxima_of_brightness_gradient_projections
  • Authors: Matveev I.A.

Task 56

  • Name: Construction of local and universal interpretable scoring models
  • Task: Build a simple and interpretable scoring system as a superposition of local models, taking into account the requirements for the system to retain knowledge about key customers and features (in other words, take into account new economic phenomena). The model must be a superposition, and each element must be controlled by its own quality criterion. Introduce a schedule for optimizing the structure and parameters of the model: the system must work in a single optimization chain. Propose an algorithm for selecting features and objects.
  • Data:
  1. Data from OTP Bank. The sample contains records of 15,223 clients classified into two classes: 1 - there was a response (1812 clients), 0 - there was no response (13411 clients). Feature descriptions of clients consist of 50 features, which include, in particular, age, gender, social status in relation to work, social status in relation to pension, number of children, number of dependents, education, marital status, branch of work. The data are available at the following addresses: www.machinelearning.ru/wiki/images/2/26/Contest_MMRO15_OTP.rar (sample A), www.machinelearning.ru/wiki/images/5/52/Contest_MMRO15_OTP_(validation).rar (sample B).
  2. Data from Home Credit: https://www.kaggle.com/c/home-credit-default-risk/data
  • References::
  1. Strijov V.V. Error function in regression analysis // Factory Laboratory, 2013, 79(5) : 65-73
  2. Bishop C. M. Linear models for classification / В кн.: Pattern Recognition and Machine Learning. Под ред.: M. Jordan, J. Kleinberg, B. Scholkopf. – New York: Springer Science+Business Media, 2006, pp--203 – 208
  3. Tokmakova A.A. Obtaining Stable Hyperparameter Estimates for Linear Regression Models // Machine Learning and Data Analysis. — 2011. — № 2. — С. 140-155
  4. S. Scitovski and N. Sarlija. Cluster analysis in retail segmentation for credit scoring // CRORR 5. 2014. 235–245
  5. Goncharov A.V. Building Interpretable Deep Learning Models in the Social Ranking Problem
  • Basic algorithm: Iterative weighted least squares (described in (2))
  • Solution: It is proposed to build a scoring system containing such a preprocessing block as a block for generating metric features. It is proposed to investigate the influence of the non-equivalence of objects on the selection of features for the model, to investigate the joint selection of features and objects when building a model. It is required to implement a schedule for optimizing the model structure using an algorithm based on the analysis of covariance matrices of model hyperparameters. The schedule includes a phased replenishment of the set of features and objects. The feature sample size will be determined by controlling the error variance. The main criterion for the quality of the system: ROC AUC (Gini).
  • Novelty:
  1. The model structure optimization schedule must satisfy the requirement to rebuild the model at any time without losing its characteristics.
  2. Accounting for the unequal value of objects in the selection of features
  • Authors: Pugaeva I.V. (consultant), Strizhov V.V. (Expert)

Task 59

  • Name: Distributed optimization under Polyak-Loyasievich conditions
  • Task: The task is to efficiently solve large systems of nonlinear equations using a network of calculators.
  • Solution: A new method for decentralized distributed solution of systems of nonlinear equations under Polyak-Loyasievich's conditions is proposed. The approach is based on the fact that the distributed optimization problem can be represented as a composite optimization problem (see 2 from the literature), which in turn can be solved by analogs of the similar triangles or sliding method (see 2 from the literature).
  • Basic algorithm: The proposed method is compared with gradient descent and accelerated gradient descent
  • References:
  1. Linear Convergence of Gradient and Proximal-GradientMethods Under the Polyak- Lojasiewicz Condition https://arxiv.org/pdf/1608.04636.pdf
  2. Linear Convergence for Distributed Optimization Under the Polyak-Łojasiewicz Condition https://arxiv.org/pdf/1912.12110.pdf
  3. Optimal Decentralized Distributed Algorithms for Stochastic ConvexOptimization https://arxiv.org/pdf/1911.07363.pdf
  4. Modern numerical optimization methods, universal gradient descent method https://arxiv.org/ftp/arxiv/papers/1711/1711.00394.pdf
  • Novelty: Reduction of a distributed optimization problem to a composite optimization problem and its solution under Polyak-Loyasievich conditions
  • Authors: Expert — А.В. Гасников, consultant — А.Н. Безносиков
  • Comment: it is important to set up a computational experiment in this task, otherwise the task will be poorly compatible with the course.

Task 17

  • Name: Intention forecasting. Investigation of the properties of local models in the spatial decoding of brain signals
  • Task: When building brain-computer interface systems, simple, stable models are used. An important stage in the construction of such a model is the construction of an adequate feature space. Previously, such a Task was solved by extracting features from the frequency characteristics of signals.
  • Data: ECoG/EEG brain signal data sets.
  • References::
    1. Motrenko A.P., Strijov V.V. Multi-way feature selection for ECoG-based brain-computer Interface // Expert systems with applications. - 2018.
    2. Eliseyev A., Aksenova T. Stable and artifact-resistant decoding of 3D hand trajectories from ECoG signals using the generalized additive model //Journal of neural engineering. – 2014.
  • Basic algorithm: The comparison is proposed to be made with the partial least squares algorithm.
  • Solution: In this paper, it is proposed to take into account the spatial dependence between sensors that read data. To do this, it is necessary to locally model the spatial impulse/signal and build a predictive model based on the local description.
  • Novelty: An essentially new way of constructing a feature description in the problem of signal decoding is proposed. Bonus: analysis of changes in the structure of the model, adaptation of the structure when the sample changes.
  • Authors: Strizhov V.V., Roman Isachenko - Experts, consultants – Valery Markin, Alina Samokhina

Task 9

  • Name: Text recognition based on skeletal representation of thick lines and convolutional networks
  • Task: It is required to build two CNNs, one recognizes a raster representation of an image, the other a vector one.
  • Data: Fonts in raster representation.
  • References::List of works [27], in particular arXiv:1611.03199 and
    • Goyal P., Ferrara E. Graph embedding techniques, applications, and performance: A survey. arXiv:1705.02801, 2017.
    • Cai H., Zheng V.W., Chang K.C.-C. A comprehensive survey of graph embedding: Problems, techniques and applications. arXiv:1709.07604, 2017.
    • Grover A., Leskovec J. node2vec: Scalable Feature Learning for Networks. arXiv:1607.00653, 2016.
    • Mestetskiy L., Semenov A. Binary Image Skeleton - Continuous Approach // Proceedings 3rd International Conference on Computer Vision Theory and Applications, VISAPP 2008. P. 251-258. URL
    • Kushnir O.A., Seredin O.S., Stepanov A.V. Experimental study of regularization parameters and approximation of skeletal graphs of binary images // Machine Learning and Data Analysis. 2014. Т. 1. № 7. С. 817-827. URL
    • Zhukova K.V., Reyer I.A. Basic Skeleton Connectivity and Parametric Shape Descriptor // Machine Learning and Data Analysis.2014. Т. 1. № 10. С. 1354-1368. URL
    • Kushnir O., Seredin O. Shape Matching Based on Skeletonization and Alignment of Primitive Chains // Communications in Computer and Information Science. 2015. V. 542. P. 123-136. URL
  • Basic algorithm: Convolution network for bitmap.
  • Solution: It is required to propose a method for collapsing graph structures, which allows generating an informative description of the thick line skeleton.
  • Novelty: A method is proposed for improving the quality of recognition of thick lines due to a new method for generating their descriptions.
  • Authors: Experts Reyer I.A., Strizhov V.V., Mark Potanin, consultant Denis Ozherelkov

Task 60

  • Name: Variational optimization of deep learning models with model complexity control
  • Task: The task of optimizing a deep learning model with a predetermined model complexity is considered. It is required to propose a model optimization method that allows generating new models with a given complexity and low computational costs.
  • Data:MNIST, CIFAR
  • References:
  • Basic algorithm: Random search
  • Solution: The proposed method is to represent a deep learning model as a hypernet (a network that generates the parameters of another network) using a Bayesian approach. Probabilistic assumptions about the parameters of deep learning models are introduced, and a variational lower estimate of the Bayesian validity of the model is maximized. The variation estimate is considered as a conditional value depending on the external parameter of complexity.
  • Novelty: The proposed method allows generating models in one-shot mode (practically without retraining) with the required model complexity, which significantly reduces the cost of optimization and retraining.
  • Authors: Oleg Bakhteev, Strizhov V.V.

Task 61

  • Name: Selecting a deep learning model based on the triplet relationship of model and sample
  • Task: Task one-shot of choosing a deep learning model is considered: choosing a model for a specific sample, issued from some general population, should not be computationally expensive.
  • Data:MNIST, synthetic data
  • References:
  • Basic algorithm: Random search
  • Solution: It is proposed to consider the space of parameters and models as two domains with their own generative models. To obtain a connection between domains, a generalization of the variational derivation to the case of triplet constraints is used.
  • Novelty: New one-shot model training method
  • Authors: Oleg Bakhteev, Strizhov V.V.

Task 64

  • Name: Theoretical validity of the application of metric classification methods using dynamic alignment (DTW) to spatiotemporal objects.
  • Task: It is necessary to study the existing theoretical justifications for applying dynamic alignment methods to various objects, and explore the use of such methods for space-time series.
    When proving the applicability of alignment methods, it is proved that the function generated by the dynamic alignment algorithm is the core. Which, in turn, justifies the use of metric classification methods.
  • References:
  • Solution: For different formulations of the DTW method (when the internal function of the distance between time series samples is different) - find and collect evidence that the function is the kernel in one place.
    For a basic set of datasets with time series (on which the accuracy of distance functions is checked ) check the fulfillment of the conditions from the Mercer theorem (positive definiteness of the matrix). Do this for various modifications of the DTW distance function. (Sakoe-Chiba band, Itakura band, weighted DTW.)
  • Novelty: Investigation of theoretical justifications for applying the dynamic alignment algorithm (DTW) and its modifications to space-time series.
  • Authors: Strizhov V.V. - Expert, Gleb Morgachev, Alexey Goncharov - consultants.

Task 66

  • Name: Agnostic neural networks
  • Task: Introduce a metric space into the problem of automatic construction (selection) of agnostic networks.
  • Data: Data from the Reinforcement learning area. Preferably the type of cars on the track.
  • References::
  • Basic algorithm: Networks from an archived article. Symbolic regression from an article in ESwA (you need to restore the code).
  • Solution: We create a model generator in the framework of symbolic regression. We create a model generator as a variational autoencoder (we won’t have time during the course). We study the metric properties of sample spaces (Euclidean) and models (Banach). We create a GAN pair - a generator-discriminator for predicting the structures of predictive models.
  • Novelty: So far, no one has succeeded. Here they discussed Tommi Yaakkola, how he came to us in Yandex. He hasn't succeeded yet either.
  • Authors: Expert Strizhov V.V., Radoslav Neichev - consultant

Task 13

  • Name: Deep learning for RNA secondary structure prediction
  • Task: RNA secondary structure is an important feature which defines RNA functional properties. Its importance can be illustrated by the fact, that it is evolutionary preserved and some types of functional RNAs always * have the same secondary structure, for example all tRNAs fold into cloverleaf. As secondary structure often defines functions, knowing RNAs secondary structure may help investigate functions of novel RNA molecules. RNA folding is not as easy as DNA folding, because RNA is single stranded molecule which forms complicated base-pairing interactions, while DNA mostly exists as fully base paired double helices. Current methods of RNA structure prediction rely on experimentally evaluated thermodynamic rules, but with thermodynamics alone only 80% of structures can be accurately predicted. We propose an AI-driven method for predicting RNA secondary structure inspired by neural machine translation model.
  • Data: RNA sequences in form of strings of characters
  • References:: https://arxiv.org/abs/1609.08144
  • Basic algorithm: https://www.ncbi.nlm.nih.gov/pubmed/16873527
  • Solution: Deep learning recurrent encoder-decoder model with attention
  • Novelty: Currently RNA secondary structure prediction still remains unsolved problem and to the best of our knowledge DL approach has never been introduced in the literature before
  • Authors: consultant Maria Popova, Alexander Isaev (we are waiting for a response from them, without a response task is removed)

Task 65

  • Name: Approximation of low-dimensional samples by heterogeneous models
  • Task: The problem of knowledge transfer (Hinton's distillation, Vapnik's privileged learning) from one network to another is investigated.
  • Data: UCI samples, see what samples are used in papers on this topic
  • References::
  • Basic algorithm: described in the work of Neichev
  • Novelty: Exploring different sampling methods
  • Solution:Try different models that are in the lectures, from non-parametric to deep ones, compare and visualize the likelihood functions
  • Authors: consultants Mark Potanin, (ask Andrey Grabovoi for help) Strizhov V.V.

Task 67

  • Name: Selection of topics in topic models for exploratory information retrieval.
  • Task: Test the hypothesis that when searching for similar documents by their topic vectors, not all topics are informative, so discarding some topics can increase the accuracy and completeness of the search. Consider the alternative hypothesis that instead of discarding topics, one can compare vectors by a weighted cosine proximity measure with adjustable weights.
  • Data: Text collections of sites habr.com and techcrunch.com. Labeled selections: queries and related documents.
  • References::
    1. Vorontsov K. V. Probabilistic Topic Modeling: An Overview of Models and Additive Regularization.
    2. Ianina A., Vorontsov K. Regularized Multimodal Hierarchical Topic Model for Document-by-Document Exploratory Search // FRUCT ISMW, 2019.
  • Basic algorithm: The topic model with regularizers and modalities described in the article (source code available).
  • Novelty:The question of informativeness of topics for vector search of thematically related documents has not been studied before.
  • Solution: Evaluate the individual informativeness of topics by throwing them out one at a time; then sort the topics by individual informativeness and determine the threshold for cutting off non-informative topics. A suggestion as to why this should work: background themes are not informative, and discarding them increases search accuracy and recall by a few percent.
  • Authors: Vorontsov K. V.в, consultant Anastasia Yanina.

Task 68

  • Name: Meta-learning of topic classification models.
  • Task: Develop universal heuristics for a priori assignment of modality weights in thematic models of text classification.
  • Data: Description of datasets, Folder with datasets.
  • References::
    1. Vorontsov K. V. Probabilistic Topic Modeling: An Overview of Models and Additive Regularization.
  • Basic algorithm: Thematic classification models for several datasets.
  • Novelty:In topic modeling, the problem of automatic selection of modality weights has not yet been solved.
  • Solution: Optimize the weights of modalities according to the quality criterion of text classification. Investigate the dependence of the optimal relative weights of modalities on the dimensional characteristics of the problem. Find formulas for estimating the initial values of modality weights without explicitly solving the problem. To reproduce datasets, apply sampling of fragments of source documents.
  • Authors: Vorontsov K. V., consultant Yulian Serdyuk.

Task 70

  • Name: Investigation of the structure of the target space when building a predictive model
  • Task:The problem of forecasting a complex target variable is studied. Complexity means the presence of dependencies (linear or non-linear). It is assumed that the initial data are heterogeneous: the spaces of the independent and target variables are of different nature. It is required to build a predictive model that would take into account the dependence in the source space of the independent variable, as well as in the space of the target variable.
  • Data: Heterogeneous data: picture - text, picture - speech and so on.
  • Basic algorithm: As basic algorithms, it is proposed to use a linear model, as well as a nonlinear neural network model.
  • Authors: Strizhov V.V. - Expert, consultant: Isachenko Roman.

Task 71

  • Name: Investigation of ways to match models by reducing the dimension of space
  • Task: The task of predicting a complex target variable is investigated. Complexity means the presence of dependencies (linear or non-linear). It is proposed to study ways to take into account dependencies in the space of the target variable, as well as the conditions under which these dependencies affect the quality of the final predictive model.
  • Data: Synthetic data with known data generation hypothesis.
  • Basic algorithm: As basic algorithms, it is proposed to use space dimensionality reduction methods (PCA, PLS, autoencoder) and linear matching models.
  • Authors: Strizhov V.V. - Expert, consultant: Isachenko Roman.

Task 72

  • Name: Construction of a single latent space in the problem of modeling heterogeneous data.
  • Task: The task of predicting a complex target variable is investigated. Complexity means the presence of dependencies (linear or non-linear). It is proposed to build a single latent space for the independent and target variables. Model matching is proposed to be carried out in the resulting low-dimensional space.
  • Data: Heterogeneous data: picture - text, picture - speech and so on.
  • Basic algorithm: As basic algorithms, it is proposed to use space dimensionality reduction methods (PCA, PLS, autoencoder) and linear matching models.
  • Authors: Strizhov V.V. - Expert, consultant: Isachenko Roman.

Task 73

  • Name: Nonlinear ranking of exploratory information search results.
  • Task: Develop an algorithm for recommending the reading order of documents (reading order, reading list) found using exploratory information retrieval. Documents should be ranked from simple to complex, from general to specific, that is, in the order in which it will be easier for the user to understand a new subject area for him. The algorithm must build a reading graph - a partial order relation on the set of found documents; in particular, it can be a collection of trees (document forest).
  • Data: Part of Wikipedia and reference reading graph derived from Wikipedia categories.
  • References::
    1. Vorontsov K. V. Probabilistic Topic Modeling: An Overview of Models and Additive Regularization.
    2. Georgia Koutrika, Lei Liu, and Steven Simske. Generating reading orders over document collections. HP Laboratories, 2014.
    3. James G. Jardine. Automatically generating reading lists. Cambridge, 2014.
  • Basic algorithm: described in the article G.Koutrika.
  • Novelty: Task has been little studied in the literature. Regularized multimodal topic models (ARTM, BigARTM) have never been applied to this problem.
  • Solution: The use of ARTM topic models in conjunction with estimates of the cognitive complexity of the text.
  • Authors: Vorontsov K. V., consultant Maxim Eremeev.

2019

Author Topic Links Consultant Reviewer
Severilov Pavel Task of searching characters in texts LinkReview

code paper slides video

Murat Apishev
Grigoriev Alexey Text recognition based on skeletal representation of thick lines and convolutional networks LinkReview

code, paper, slides video

Ilya Zharikov review Varenyk Natalia
Grishanov Alexey Automatic configuration of BigARTM parameters for a wide class of tasks LinkReview code, paperslides

video

Viktor Bulatov review Gerasimenko Nikolay
Yusupov Igor Dynamic alignment of multivariate time series LinkReview code paper slides video Alexey Goncharov
Varenyk Natalia Spherical CNN for QSAR prediction LinkReview, code, paper, slides video Maria Popova review Grigoriev Alexey
Beznosikov Alexander Z-learning of linearly-solvable Markov Decision Processes LinkReview

paper code slides video

Yury Maximov
Panchenko Svyatoslav Obtaining a simple sample at the output of the neural network layer LinkReview,

code, paper, slides

Gadaev Tamaz
Veselova Evgeniya Deep Learning for reliable detection of tandem repeats in 3D protein structures Code link review paper slides video Guillaume Pages, Sergei Grudinin
Aminov Timur Quality Prediction for a Feature Selection Procedure LinkReview code paper

slides

Roman Isachenko
Markin Valery Investigation of the properties of local models in the spatial decoding of brain signals LinkReview

code paper slides video

Roman Isachenko
Abdurahmon Sadiev Generation of features using locally approximating models LinkReview

code, paper, slides video

Anastasia Motrenko
Tagir Sattarov Machine translation training without parallel texts. LinkReview code paper, slides video Oleg Bakhteev
Gerasimenko Nikolay Thematic search for similar cases in the collection of acts of arbitration courts. LinkReview code paper slides video Ekaterina Artyomova reviewGrishanov Alexey

Task 40

  • Name: Quality prediction for the feature selection procedure.
  • Task: The solution of the feature selection problem is reduced to enumeration of binary cube vertices. This procedure cannot be performed for a sample with a large number of features. It is proposed to reduce this problem to optimization in a linear space.
  • Data: Synthetic data + simple samples
  • References::
    1. Bertsimas D. et al. Best subset selection via a modern optimization lens //The annals of statistics. – 2016. – Т. 44. – №. 2. – С. 813-852.
    2. Luo R. et al. Neural architecture optimization //Advances in Neural Information Processing Systems. – 2018. – С. 7827-7838.
  • Basic algorithm: Popular feature selection methods.
  • Solution: In this paper, it is proposed to build a model that, based on a set of features, predicts the quality on a test sample. To do this, a mapping of a binary cube into a linear space is constructed. After that, the quality of the model in linear space is maximized. To reconstruct the solution of the problem, the model of inverse mapping into a binary cube is used.
  • Novelty: A constructively new approach to solving the problem of choosing models is proposed.
  • Authors: Strizhov V.V., Tetiana Aksenova, consultant – Roman Isachenko

Task 42

  • Name: Z-learning of linearly-solvable Markov Decision Processes
  • Task: Adapt Z-learning from [1] to the case of Markov Decision Process discussed in [2] in the context of energy systems. Compare it with standard (in reinforcement learning) Q-learning.
  • Data: We consider a Markov Process described via transition probability matrix. Given initial state vector (probability of being in a state at time zero), we generate data for the time evolution of the state vector. See [2] for an exemplary process describing evolution of an ensemble of energy consumers.
  • References::
    1. E. Todorov. Linearly-solvable Markov decision problems https://homes.cs.washington.edu/~todorov/papers/TodorovNIPS06.pdf
    2. Ensemble Control of Cycling Energy Loads: Markov Decision Approach. Michael Chertkov, Vladimir Y. Chernyak, Deepjyoti Deka. https://arxiv.org/abs/1701.04941
    3. Csaba Szepesvári. Algorithms for Reinforcement Learning. https://sites.ualberta.ca/~szepesva/papers/RLAlgsInMDPs.pdf
  • Basic algorithm: Principal comparison should be made with Q learning described in [3]
  • Solution: We suppose that plugging in algorithm from [1] directly into [2] gives faster and more reliable solution.
  • Novelty: In the area of power systems there is a huge demand on fast reinforcement learning algorithms, but there is still a lack of that (in particular the ones respect the physics/underlying graph)
  • Authors: Yury Maximov (consultant, expert), Michael Chertkov (expert)

Task 1

  • Name: Forecasting the direction of movement of the price of exchange instruments according to the news flow.
  • Task: Build and explore a model for predicting the direction of price movement. Given a set of news S and a set of timestamps T corresponding to the time of publication of news from S. 2. Time series P, corresponding to the price of an exchange instrument, and time series V, corresponding to the volume of sales for this instrument, for a period of time T'. 3. The set T is a subset of the time period T'. 4. Time intervals w=[w0, w1], l=[l0, l1], d=[d0, d1], where w0 < w1=l0 < l1=d0 < d1. It is required to predict the direction of movement of the price of an exchange instrument at the time t=d0 according to the news released in the period w.
  • Data:
    1. Financial data: data on quotes (at one tick interval) of several financial instruments (GAZP, SBER, VTBR, LKOH) for the 2nd quarter of 2017 from the Finam.ru website; for each point of the series, the date, time, price and volume are known.
    2. Text data: economic news for the 2nd quarter of 2017 from Forexis; each news is a separate html file.
  • References:
    1. Usmanova K.R., Kudiyarov S.P., Martyshkin R.V., Zamkovoy A.A., Strijov V.V. Analysis of relationships between indicators in forecasting cargo transportation // Systems and Means of Informatics, 2018, 28(3).
    2. Kuznetsov M.P., Motrenko A.P., Kuznetsova M.V., Strijov V.V. Methods for intrinsic plagiarism detection and author diarization // Working Notes of CLEF, 2016, 1609 : 912-919.
    3. Aysina Roza Munerovna, Thematic modeling of financial flows of corporate clients of a bank based on transactional data, final qualification work.
    4. Lee, Heeyoung, et al. "On the Importance of Text Analysis for Stock Price Prediction." LREC. 2014.
  • Basic algorithm: Method used in the article (4).
  • Solution: Using topic modeling (ARTM) and local approximation models to translate a sequence of texts corresponding to different timestamps into a single feature description. Quality criterion: F1-score, ROC AUC, profitability of the strategy used.
  • Novelty: To substantiate the connection of time series, the Converging cross-mapping method is proposed.
  • Authors: Ivan Zaputlyaev (consultant), Strizhov V.V., K.V. Vorontsov (Experts)

Task 3

  • Name: Dynamic alignment of multidimensional time series.
  • Task: A characteristic multidimensional time series is the trajectory of a point in 3-dimensional space. The two trajectories need to be optimally aligned with each other. For this, the distance DTW between two time series is used. In the classical representation, DTW is built between one-dimensional time series. It is necessary to introduce various modifications of the algorithm for working with high-dimensional time series: trajectories, corticograms.
  • Data: The data describes 6 classes of time series from the mobile phone's accelerometer. https://sourceforge.net/p/mlalgorithms/code/HEAD/tree/Group274/Goncharov2015MetricClassification/data/
  • References:
    1. Multidimensional DTW: https://pdfs.semanticscholar.org/76d3/5bd5a52453ebde80faaa1467d7effd74426f.pdf
  • Basic algorithm: Using L_p distances between two dimensions of a time series, their modifications.
  • Solution: Investigation of distances resistant to change of coordinate order, studies of distances unstable to change of coordinate order. Experiments with other types of distances (cosine, RBF, others).
  • Novelty: There is no complete review and study of methods for working with multivariate time series. The dependence of the quality of the solution on the selected distances between measurements has not been studied.
  • Authors: Alexey Goncharov - consultant, Expert, Strizhov V.V. - Expert

Task 43

  • Name: Getting a simple sample at the output of the neural network layer
  • Task: The output of the neural network is usually a generalized linear model over the outputs of the penultimate layer. It is necessary to propose a way to test the simplicity of the sample and its compliance with the generalized linear model (linear regression, logistic regression) using a system of statistical criteria.
  • Data: For the computational experiment, it is proposed to use classical samples from the UCI repository. Link to samples https://github.com/ttgadaev/SampleSize/tree/master/datasets
  • References:: http://www.ccas.ru/avtorefe/0016d.pdf c 49-63 Bishop, C. 2006. Pattern Recognition and Machine Learning. Berlin: Springer. $758
  • Basic algorithm: White test, Wald test, Goldfeld-Quantum test, Durbin-Watson, Chi-square, Fry-Behr, Shapiro-Wilk
  • Solution: The system of tests for checking the simplicity of the sample (and the adequacy of the model), the independent variables are not random, the dependent variables are distributed normally or binomially, there are no gaps and outliers, the classes are balanced, the sample is approximated by a single model. The variance of the error function does not depend on the independent variable. The study is based on synthetic and real data.
  • Authors: Gadaev T. T. (consultant) Strizhov V.V., Grabovoi A.V. (Experts)

Task 14

  • Name: Deep Learning for reliable detection of tandem repeats in 3D protein structures more in PDF
  • Task: Deep learning algorithms pushed computer vision to a level of accuracy comparable or higher than a human vision. Similarly, we believe that it is possible to recognize the symmetry of a 3D object with a very high reliability, when the object is represented as a density map. The optimization problem includes i) multiclass classification of 3D data. The output is the order of symmetry. The number of classes is ~10-20 ii) multioutput regression of 3D data. The output is the symmetry axis (a 3-vector). The input data are typically 24x24x24 meshes. The total amount of these meshes is of order a million. Biological motivation : Symmetry is an important feature of protein tertiary and quaternary structures that has been associated with protein folding, function, evolution, and stability. Its emergence and ensuing prevalence has been attributed to gene duplications, fusion events, and subsequent evolutionary drift in sequence. Methods to detect these symmetries exist, either based on the structure or the sequence of the proteins, however, we believe that they can be vastly improved.
  • Data: Synthetic data are obtained by ‘symmetrizing’ folds from top8000 library (http://kinemage.biochem.duke.edu/databases/top8000.php).
  • References:: Our previous 3D CNN: [30] Invariance of CNNs (and references therein): 01630265/document, [31]
  • Basic algorithm: A prototype has already been created using the Tensorflow framework [4], which is capable of detecting the order of cyclic structures with about 93% accuracy. The main goal of this internship is to optimize the topology of the current neural network prototype and make it rotational and translational invariant with respect to input data. [4] [32]
  • Solution: The network architecture needs to be modified according to the invariance properties (most importantly, rotational invariance). Please see the links below [33], [34] The code is written using the Tensorflow library, and the current model is trained on a single GPU (Nvidia Quadro 4000)of a desktop machine.
  • Novelty: Applications of convolutional networks to 3D data are still very challenging due to large amount of data and specific requirements to the network architecture. More specifically, the models need to be rotationally and transnationally invariant, which makes classical 2D augmentation tricks loosely applicable here. Thus, new models need to be developed for 3D data.
  • Authors: Expert Sergei Grudinin, consultants Guillaume Pages

Task 46

  • Name: Task of searching characters in texts
  • Task: In the simplest case, this Task is reduced to the Sequence Labeling task on a labeled selection. The difficulty lies in obtaining a sufficient amount of training data, that is, it is required to obtain a larger sample from the existing small Expert markup (automatically by searching for patterns or by compiling a simple and high-quality markup instruction, for example, in Toloka). The presence of markup allows you to start experimenting with the selection of the optimal model, various neural network architectures (BiLSTM, Transformer, etc.) may be of interest here.
  • Data: Dictionary of symbols, Marked artistic texts
  • References: http://www.machinelearning.ru/wiki/images/0/05/Mmta18-rnn.pdf
  • Basic algorithm: HMM, RNN
  • Solution: It is proposed to compare the work of several state-of-the-art algorithms. Propose a classifier quality metric for characters (character/non-character). Determine applicability of methods.
  • Novelty: The proposed approach to text analysis is used by Experts in manual mode and has not been automated
  • Authors: M. Apishev (consultant), D. Lemtyuzhnikova

Task 47

  • Name: Deep learning for RNA secondary structure prediction
  • Task: RNA secondary structure is an important feature which defines RNA functional properties. Its importance can be illustrated by the fact, that it is evolutionary preserved and some types of functional RNAs always * have the same secondary structure, for example all tRNAs fold into cloverleaf. As secondary structure often defines functions, knowing RNAs secondary structure may help investigate functions of novel RNA molecules. RNA folding is not as easy as DNA folding, because RNA is single stranded molecule which forms complicated base-pairing interactions, while DNA mostly exists as fully base paired double helices. Current methods of RNA structure prediction rely on experimentally evaluated thermodynamic rules, but with thermodynamics alone only 80% of structures can be accurately predicted. We propose an AI-driven method for predicting RNA secondary structure inspired by neural machine translation model.
  • Data: RNA sequences in form of strings of characters
  • References:: https://arxiv.org/abs/1609.08144
  • Basic algorithm: https://www.ncbi.nlm.nih.gov/pubmed/16873527
  • Solution: Deep learning recurrent encoder-decoder model with attention
  • Novelty: Currently RNA secondary structure prediction still remains unsolved problem and to the best of our knowledge DL approach has never been introduced in the literature before
  • Authors: consultant Maria Popova Chapel-Hill

Task 4

  • Name: Automatic setting of ARTM parameters for a wide class of tasks.
  • Task: The bigARTM open library allows you to build topical models using a wide class of possible regularizers. However, this flexibility makes the task of setting the coefficients very difficult. This tuning can be greatly simplified by using the relative regularization coefficients mechanism and automatic selection of N-grams. We need to test the hypothesis that there is a universal set of relative regularization coefficients that gives "reasonably good" results on a wide class of problems. Several datasets are given with some external quality criterion (for example, classification of documents into categories or ranking). We find the best parameters for a particular dataset, giving the "locally the best model". We find the bigARTM initialization algorithm that produces thematic models with quality comparable to the "locally best model" on its dataset. Comparability criterion in quality: on this dataset, the quality of the "universal model" is no more than 5% worse than that of the "locally best model".
  • Data: Victorian Era Authorship Attribution Data Set, uci.edu/ml/datasets/Twenty+Newsgroups 20 Newsgroups, ICD-10, search/ranking triplets.
  • References:
    1. WRC by Nikita Doykov: http://www.machinelearning.ru/wiki/images/9/9f/2015_417_DoykovNV.pdf
    2. Presentation by Viktor Bulatov at a scientific seminar: https://drive.google.com/file/d/19pJ21LRPeeOxY4mkcSnQCRm93zOO4J5b/view
    3. Draft with formulas: https://drive.google.com/open?id=1AqS7snUsSJ18ZYBtC-6uP_2dMTDJSGeD
  • Basic algorithm: PLSA / LDA / logregression.
  • Solution: bigARTM with background themes and smoothing, sparseness and decorrelation regularizers (coefficients picked up automatically), as well as automatically selected N-grams.
  • Novelty: The need for automated tuning of model parameters and the lack of such implementations in the scientific community.
  • Authors: consultant Viktor Bulatov, ExpertVorontsov K. V..

Task 50

  • Name: Thematic search for similar cases in the collection of acts of arbitration courts.
  • Task: Build an information retrieval algorithm for a collection of acts of arbitration courts. The request can be an arbitrary document of the collection (the text of the act). The search result should be a list of documents in the collection, ranked in descending order of relevance.
  • Data: collection of text documents — acts of arbitration courts http://kad.arbitr.ru.
  • References:
    1. Anastasia Yanina. Thematic exploratory information search. 2018. FIVT MIPT.
    2. Ianina A., Golitsyn L., Vorontsov K. Multi-objective topic modeling for exploratory search in tech news. AINL-2017. CCIS, Springer, 2018.
    3. Ahmed El-Kishky, Yanglei Song, Chi Wang, Clare Voss, Jiawei Han. Scalable Topical Phrase Mining from Text Corpora. 2015.
  • Basic algorithm: BigARTM with decorrelation, smoothing, sparse regularizers. Search by TF-IDF of words, by TF-IDF of UPA links, by thematic vector representations of documents, using a cosine proximity measure. TopMine algorithm for collocation detection.
  • Solution: Add modality of links to legal acts. Add modality of legal terms. Choose the optimal number of topics and regularization strategy. Organize the process of marking pairs of documents. Implement the evaluation of the quality of the search for a labeled sample of pairs of documents.
  • Novelty: The first attempt to use ARTM for thematic search of legal texts.
  • Authors: consultant Ekaterina Artyomova, Expert Vorontsov K. V..

Group 2

Author Topic Links Consultant Reviewer
Vishnyakova Nina Optimal Approximation of Non-linear Power Flow Problem LinkReview paper code presentation video Yury Maximov reviewer Loginov Roman

review

Kudryavtseva Polina Intention forecasting. Building an optimal signal decoding model for modeling a brain-computer interface. code

LinkReview paper video presentation

Roman Isachenko Nechepurenko Ivan

review

Loginov Roman Multi-simulation as a universal way to describe a general sample code

LinkReview paper ChatInvite presentation video

Aduenko A. A. Макаров Михаил review
Mikhail Makarov Location determination by accelerometer signals code

LinkReview paper presentation video

Anastasia Motrenko Cherepkov Anton: review
Kozinov Alexeyй Task of finding characters in images LinkReview

paper code

M. Apishev,

D. Lemtyuzhnikova

Gracheva Anastasia review
Buchnev Valentin Early prediction of sufficient sample size for a generalized linear model. LinkReview

paper code presentation video

Grabovoi A.V. reviewer
Nechepurenko Ivan Multisimulation, privileged training code,

paper, LinkReview presentation

R. G. Neichev Kudryavtseva Polina
Gracheva Anastasia Estimation of binding energy of protein and small molecules code

paper LinkReview presentation video

Sergei Grudinin,

Maria Kadukova

reviewer
Cherepkov Anton Privileged learning in the problem of iris boundary approximation paper, slides, code, LinkReview

video

R. G. Neichev Lepekhin Mikhail

preliminary review

Lepekhin Mikhail Creation of ranking models for information retrieval systems. Algorithm for Predicting the Structure of Locally Optimal Models code

LinkReview paper presentation video

Andrey Kulunchakov Vishnyakova Nina, review
Gridasov Ilya Automatic construction of a neural network of optimal complexity LinkReview

paper Presentation code

O. Yu. Bakhteev, Strizhov V.V. Buchnev Valentin
Telenkov Dmitry Brain signal decoding and intention prediction LinkReview

git The paper Presentation code

Andrey Zadayanchuk reviewer

Task 18

  • Name: Forecasting intentions. Building an optimal signal decoding model for modeling a brain-computer interface.
  • Task: The Brain Computer Interface (BCI) allows you to help people with disabilities regain their mobility. According to the available description of the device signal, it is necessary to simulate the behavior of the subject.
  • Data: Data sets of ECoG/EEG brain signals.
  • References::
    • Motrenko A.P., Strijov V.V. Multi-way feature selection for ECoG-based brain-computer Interface // Expert systems with applications. - 2018.
  • Basic algorithm: It is proposed to compare with the partial least squares algorithm.
  • Solution: In this work, it is proposed to build a single system that solves the problem of signal decoding. As stages of building such a system, it is proposed to solve the problems of data preprocessing, feature space extraction, dimensionality reduction and selection of a model of optimal complexity. It is proposed to use the tensor version of PLS with feature selection.
  • Novelty: In the formulation of the problem, the complex nature of the signal is taken into account: a continuous trajectory of movement, the presence of discrete structural variables (fingers or joint movement), the presence of continuous variables (position of a finger or limb).
  • Authors: Strizhov V.V., Tetiana Aksenova, consultant – Roman Isachenko

Task 41

  • Name: Optimal Approximation of Non-linear Power Flow Problem
  • Task: Our goal is to approximate the solution of non-linear non-convex optimal power flow problem by solving a sequence of convex optimization problems (aka trust region approach). On this way we propose to compare various approaches for an approximate solution of this problem with adaptive approximation of the power flow non-linearities with a sequence of quadratic and/or piece-wise linear functions
  • Data: Matpower module from MATLAB contains all necessary test cases. Start considering IEEE 57 bus case.
  • References::
    1. Molzahn, D. K., & Hiskens, I. A. (2019). A survey of relaxations and approximations of the power flow equations. Foundations and Trends in Electric Energy Systems, 4(1-2), 1-221. https://www.nowpublishers.com/article/DownloadSummary/EES-012
    2. The QC Relaxation: A Theoretical and Computational Study on Optimal Power Flow. Carleton Coffrin ; Hassan L. Hijazi; Pascal Van Hentenryck https://ieeexplore.ieee.org/abstract/document/7271127/
    3. Convex Relaxations in Power System Optimization: A Brief Introduction. Carleton Coffrin and Line Roald. https://arxiv.org/pdf/1807.07227.pdf
    4. Optimal Adaptive Linearizations of the AC Power Flow Equations. Sidhant Misra, Daniel K. Molzahn, and Krishnamurthy Dvijotham https://molzahn.github.io/pubs/misra_molzahn_dvijotham-adaptive_linearizations2018.pdf
  • Basic algorithm: A set of algorithms described in [1] should be considered to compare with, details behind the proposed method would be shared by the consultant (a draft of the paper)
  • Solution: to figure out the quality of the solution we propose to compare it with the ones given by IPOPT and numerous relaxations, and do some reverse engineering regarding to our method
  • Novelty: The OPF is a truly hot topic in power systems, and is of higher interest by the discrete optimization community (as a general QCQP problem). Any advance in this area is of higher interest by the community
  • Authors: Yury Maximov (consultant and expert), Michael Chertkov (expert)
  • Notes: the problem has both the computational and the theoretical focuses, so 2 students are ok to work on this topic

Task 2

  • Name: Investigation of reference objects in the problem of metric classification of time series.
  • Task: The DTW function is the distance between two time series that can be non-linearly warped relative to each other. It looks for the best alignment between two objects, so it can be used in a metric object classification problem. One of the methods for solving the problem of metric classification is measuring distances to reference objects and using the vector of these distances as an indicative description of the object. The DBA method is an algorithm for constructing centroids (reference objects) for time series based on the DTW distance. When plotting the distance between the time series and the centroid, different pairs of values (eg peak values) are more specific to one of the classes, and the impact of such coincidences on the distance value should be higher.

It is necessary to explore various ways of constructing reference objects, as well as determining their optimal number. The criterion is the quality of the metric classifier in the task. In the DBA method, for each centroid, it is proposed to create a weight vector that demonstrates the "significance" of the measurements of the centroid, and use it in the modified weighted-DTW distance function.

Literature research and a combination of up-to-date methods.

  • Novelty: There has not been a comprehensive study of various methods of constructing centroids and reference elements along with the choice of their optimal number.
  • Authors: Alexey Goncharov - consultant, Expert, Strizhov V.V. - Expert

Task 7

  • Name: Privileged learning in the iris boundary approximation problem
  • Task: Based on the image of the human eye, determine the circles approximating the inner and outer border of the iris.
  • Data: Bitmap monochrome images, typical size 640*480 pixels (however other sizes are possible)[35], [36].
  • References::
    • Aduenko A.A. Selection of multi-models in Tasks classification (supervisor Strizhov V.V.). Moscow Institute of Physics and Technology, 2017. [37]
    • K.A. Gankin, A.N. Gneushev, I.A. Matveev Segmentation of the iris image based on approximate methods with subsequent refinements // Izvestiya RAN. Theory and control systems, 2014, no. 2, p. 78–92.
    • Duda, R. O. Use of the Hough transformation to detect lines and curves in pictures / R. O. Duda, P. E. Hart // Communications of the ACM. 1972 Vol. 15, no. 1.Pp.
  • Basic algorithm: Efimov Yury. Search for the outer and inner boundaries of the iris in the eye image using the paired gradient method, 2015.
  • Solution: See iris_circle_problem.pdf
  • Novelty: A fast non-enumerative algorithm for approximating boundaries using linear multimodels is proposed. Additionally, capsule neural networks.
  • consultant: Radoslav Neichev (by Strizhov V.V., Expert Matveev I.A.)

Task 44

  • Name: Early prediction of sufficient sample size for a generalized linear model.
  • Task: The problem of designing an experiment is being investigated. The Task of estimating a sufficient sample size according to the data is solved. The sample is assumed to be simple. It is described by an adequate model. Otherwise, the sample is generated by a fixed probabilistic model from a known class of models. The sample size is considered sufficient if the model is restored with sufficient confidence. It is required, knowing the model, to estimate a sufficient sample size at the early stages of data collection.
  • Data: For the computational experiment, it is proposed to use classical samples from the UCI repository. Link to samples https://github.com/ttgadaev/SampleSize/tree/master/datasets
  • References::
    1. [Overview of methods for estimating sample size]
    2. http://svn.code.sf.net/p/mlalgorithms/code/PhDThesis/.
    3. Bootstrap method. https://projecteuclid.org/download/pdf_1/euclid.aos/1.

Bishop, C. 2006. Pattern Recognition and Machine Learning. Berlin: Springer. $758

  • Basic algorithm: We will say that the sample size is sufficient if the log-likelihood has a small variance, on a sample of size m calculated using bootstrap.

We are trying to approximate the dependence of the average value of log-likelihood and its variance on the sample size.

  • Solution: The methods described in the review are asymptotic or require a deliberately large sample size. The new method should be to predict volume in the early stages of experiment design, i.e. when data is scarce.
  • Authors: Grabovoi A.V. (consultant), Gadaev T. T. Strizhov V.V. (Experts)
  • Note: to determine the simplicity of the sample, a new definition of complexity is proposed (Sergey Ivanychev). This is a separate work, +1 Task 44a (? Katruza).

Task 15

  • Name: Formulation and solution of an optimization problem combining classification and regression to estimate the binding energy of a protein and small molecules. Task description [38]
  • Task: From a bioinformatics point of view, the Task is to estimate the free energy of protein binding to a small molecule (ligand): the best ligand in its best position has the lowest free energy of interaction with the protein. (Following a large text, see the file at the link above.)
  • Data:
    • Data for binary classification. Approximately 12,000 protein-ligand complexes: for each of them there is 1 native position and 18 non-native ones. The main descriptors are histograms of distributions of distances between different atoms of the protein and ligand, the dimension of the vector of descriptors is ~ 20,000. In the case of continued research and publication in a specialized journal, the set of descriptors can be expanded. The data will be provided as binary files with a python script to read.
    • Data for regression. For each of the presented complexes, the value of the quantity is known, which can be interpreted as the binding energy.
  • References::
  • Basic algorithm: [42] In the classification problem, we used an algorithm similar to linear SVM, whose relationship with the energy estimate is beyond the scope of the classification problem, described in the above article. Various loss functions can be used in a regression problem.
  • Solution: It is necessary to connect the previously used optimization problem with the regression problem and solve it using standard methods. Cross-validation will be used to check the operation of the algorithm. There is a separate test set consisting of (1) 195 complexes of proteins and ligands, for which it is necessary to find the best ligand pose (the algorithm for obtaining ligand positions differs from that used in training), (2) complexes of proteins and ligands, for which native poses it is necessary to predict the energy binding, and (3) 65 proteins for which the most strongly binding ligand is to be found.
  • Novelty: First of all, the interest is combining classification and regression problems. The correct assessment of the quality of protein and ligand binding is used in drug development to search for molecules that interact most strongly with the protein under study. Using the classification problem described above to predict the binding energy results in an insufficiently high correlation of predictions with experimental values, while using the regression problem alone leads to overfitting.
  • Authors Sergei Grudinin, Maria Kadukova

Task 27

  • Name: Creation of ranking models for information retrieval systems. Algorithm for Predicting the Structure of Locally Optimal Models
  • Task: It is required to predict a time series using some parametric superposition of algebraic functions. It is proposed not to cost the prognostic model, but to predict it, that is, to predict the structure of the approximating superposition. A class of considered superpositions is introduced, and on the set of such structural descriptions, a search is made for a locally optimal model for the problem under consideration. The task consists in 1) searching for a suitable structural description of the model 2) describing the search algorithm for the structure that will correspond to the optimal model 3) describing the algorithm for inverse construction of the model according to its structural description. For an already existing example of the answer to questions 1-3, see the works of A. A. Varfolomeeva.
  • Data:
    • Collection of text documents TREC (!)
    • A set of time series, which implies the restoration of functional dependencies. It is proposed to first use synthetic data or immediately apply the algorithm to forecasting time series 1) electricity consumption 2) physical activity with subsequent analysis of the resulting structures.
  • References::
    1. (!) Kulunchakov A.S., Strijov V.V. Generation of simple structured Information Retrieval functions by genetic algorithm without stagnation // Expert Systems with Applications, 2017, 85: 221–230.
    2. A. A. Varfolomeeva Selection of features when marking up bibliographic lists using structural learning methods, 2013, [43]
    3. Bin Cao, Ying Li and Jianwei Yin Measuring Similarity between Graphs Based on the Levenshtein Distance, 2012, [44]
  • Basic algorithm: Described in [1]. Developed in the work of the 974 group team. It is proposed to use their code and experiment.
  • Solution: It is proposed to try to repeat the experiment of A. A. Varfolomeeva for a different structural description in order to understand what is happening. The superposition of algebraic functions defines an ortree, on the vertices of which the labels of the corresponding algebraic functions or variables are given. Therefore, the structural description of such a superposition can be its DFS-code. This is a string consisting of vertex labels, written in the order in which the tree is traversed by depth-first search. Knowing the arities of the corresponding algebraic functions, we can restore any such DFS-code in O(n) and get back the superposition of functions. On the set of similar string descriptions, it is proposed to search for the string description that will correspond to the optimal model.
  • Authors: consultant Andrey Kulunchakov (Inria Montbonnot), Expert Strizhov V.V.

Task 26

  • Name: Accelerometer positioning
  • Task: Given initial coordinates, accelerometer signals, additional information (gyroscope, magnetometer signals). Possibly inaccurate map given (Task SLAM)
  • Data: from [1], self-collected data.
  • References::
    1. https://arxiv.org/pdf/1712.09004.pdf
    2. https://ieeexplore.ieee.org/document/1528431
  • Basic algorithm: from [1].
  • Solution: Search for a priori and additional information that improves positioning accuracy.
  • Novelty: Statement of the problem in terms of Projection to Latent Spaces
  • Authors: consultant Anastasia Motrenko, Expert Ilya Gartseev , Strizhov V.V.

Task 45

  • Name: Task of searching characters in images
  • Task: This Task in one of the formulation options can be reduced to two sequential operations: 1) searching for objects in the image and determining their class 2) searching the database for information about the symbolic meaning of the found objects. The main difficulty in solving the problem lies in the search for objects in the image. However, the following classification may also be difficult due to the fact that the image of the object may be incomplete, unusually stylized, and the like.
  • Data: Dictionary of Symbols Museum Sites Image-net
  • References:
    1. http://www.machinelearning.ru/wiki/images/e/e2/IDP18.pdf (p. 116)
    2. http://www.image-net.org
  • Basic algorithm: CNN
  • Solution: It is proposed to compare the work of several state-of-the-art algorithms. Suggest a quality metric for searching and classifying objects. Determine applicability of methods.
  • Novelty: The proposed image analysis approach is used by Experts in manual mode and has not been automated
  • Authors: M. Apishev (consultant), D. Lemtyuzhnikova

Task 28

  • Name: Multi-simulation as a universal way to describe a general sample
  • Task: Build a method for incremental refinement of the multimodel structure when new objects appear. Development and comparison of different algorithms for updating the structure of multimodels. Construction of an optimal scheme for refining the structure of a multimodel depending on the total sample size.
  • Data: At the initial stage of work, synthetic data with a known statistical structure is used. Testing of the developed methods is carried out on real data from the UCI repository.
  • References:
  1. Bishop, Christopher M. "Pattern recognition and machine learning." Springer, New York (2006).
  2. Gelman, Andrew, et al. Bayesian data analysis, 3rd edition. Chapman and Hall/CRC, 2013.
  3. MacKay, David JC. "The evidence framework applied to classification networks." Neural computation 4.5 (1992): 720-736.
  4. Aduenko A. A. "Choice of multimodels in Task classification" Ph.D. thesis
  5. Motrenko, Anastasiya, Strizhov V.V., and Gerhard-Wilhelm Weber. "Sample size determination for logistic regression." Journal of Computational and Applied Mathematics 255 (2014): 743-752.
  • Basic algorithm: Algorithm for constructing adequate multi-models from #4.
  • Solution: Bayesian approach to the problem of choosing models based on validity. Analysis of the properties of validity and its relationship with statistical significance.
  • Novelty: A method is proposed for constructing an optimal scheme for updating the structure of a multimodel when new objects appear. The relationship between validity and statistical significance for some classes of models has been studied.
  • Authors: Strizhov Vadim Viktorovich, Aduenko Alexander Alexandrovich (GMT-5)

Task 11

Task 48

Task 49

  • Name: Brain signal decoding and intention prediction
  • Task: It is required to build a model that restores the movement of the limbs according to the corticogram.
  • Data: neurotycho.org [9] (or fingers)
  • References:
    • Neichev R.G., Katrutsa A.M., Strizhov V.V. Selection of the optimal set of features from a multicorrelated set in the forecasting problem. Zavodskaya Lab. Materials Diagnostics, 2016, 82(3) : 68-74. [10]
    • Isachenko R.V., Strijov V.V. Quadratic Programming Optimization with Feature Selection for Non-linear Models // Lobachevskii Journal of Mathematics, 2018, 39(9) : 1179-1187. article
  • Basic algorithm: Partial Least Squares[11]
  • Solution: Create a feature selection algorithm alternative to PLS and taking into account the non-orthogonal feature interdependence structure.
  • Novelty: A feature selection method is proposed that takes into account the regularities of both the and independent variable and the dependent variable. Bonus: Explore changes in model structure as the nature of the sample changes.
  • Authors: Andrey Zadayanchuk, Strizhov V.V.

2018

Autumn 2018

Number Project name materials Team
0 (Example) Metric classification of time series code,

LinkReview, Discussion

Alexey Goncharov*, Maxim Savinov
1 Forecasting the direction of movement of the price of exchange instruments according to the news flow Code,

LinkReview, Slides, Report

Alexander Borisov,

Drobin Maxim, Govorov Ivan, Mukhitdinova Sofia, Valentin Rodionov, Valentin Akhiyarov

2 Construction of reference objects for a set of multidimensional time series Code

LinkReview

Iskhakov Rishat,

Korepanov Georgy, Solodnev Samirkhanov Danil

3 Dynamic alignment of multivariate time series Code

LinkReview Slides Report

Gleb Morgachev,

Vladislav Smirnov, Tatiana Lipnitskaya

4 Automatic adjustment of ARTM parameters for a wide class of tasks Code,

LinkReview, Presentation

Golubeva Tatiana,

Ivanova Ekaterina, Matveeva Svetlana, Trusov Anton, Tsaritsyn Mikhail, Chernonog Vyacheslav

5 Finding paraphrases Code,

LinkReview

Stas Okrug, Nikita Mokrov

Fedor Kitashov, Polina Proskura, Natalia Basimova, Roman Krasnikov, Akhmedkhan Shabanov

6 On conformational changes of proteins using collective motions in torsion angle space and L1 regularization Code,

LinkReview Presentation

Ryabinina Raisa, Emtsev Daniil
7 Privileged training in the problem of approximating the borders of the iris Code,

LinkReview

Pavel Fedosov, Alexey Gladkov,

Genrikh Kenigsberger, Ivan Korostelev, Nikolay Balakin

8 Generation of features using locally approximating models Code,

LinkReview

Ibrahim Kurashov, Nail Gilmutdinov,

Albert Mulyukov, Valentin Spivak

9 Text recognition based on skeletal representation of thick lines and convolutional networks Code, LiteratureReview, Slides, report Kutsevol Polina

Lukoyanov Artem Korobov Nikita Boyko Alexander Litovchenko Leonid Valukov Alexandr Badrutdinov Kamil Yakushevskiy Nikita Valyukov Nikolay Tushin Kirill


10 Comparison of neural network and continuous-morphological methods in the problem of text detection Code, LinkReview, Discussion, Presentation Gaiduchenko Nikolay

Torlak Artyom Akimov Kirill Mironova Lilia Gonchar Daniel

11 Automatic construction of a neural network of optimal complexity Code, LinkReview, report, slides Nikolai Goryan

Alexander Ulitin Tovkes Artem Taranov Sergey Gubanov Sergey Krinitsky Konstantin Zabaznov Anton Valery Markin

12 Machine translation training without parallel texts. Code,

LinkReview, Report, Slides

Alexander Artemenkov

Angelina Yaroshenko Andrey Stroganov Egor Skidnov Anastasia Borisova Ryabov Fedor Mazurov Mikhail

13 Deep learning for RNA secondary structure prediction Code

Link Review

Dorokhin Semyon

Pastukhov Sergey Pikunov Andrey Nesterova Irina Anna chat

14 Deep Learning for reliable detection of tandem repeats in 3D protein structures Code

Link Review

Veselova Evgeniya
15 Formulation and solution of an optimization problem combining classification and regression to estimate the binding energy of a protein and small molecules Code

Link Review

Merkulova Anastasia

Plumite Elvira Zhiboyedova Anastasia chat

16 Estimation of the optimal sample size for research in medicine Code

Link Review

Artemy Kharatyan,

Mikhail Mikheev, Evgin Alexander, Seppar Alexander, Konoplyov Maxim, Murlatov Stanislav, Makarenko Stepan

17 Intention forecasting. Investigation of the properties of local models in the spatial decoding of brain signals Code,

LinkReview, Presentation

Natalia Bolobolova,

Alina Samokhina, Shiyanov Vadim

18 Intention forecasting. Building an optimal signal decoding model for modeling a brain-computer interface. Code,

LinkReview, Presentation, Article

Ivan Nasedkin, Galiya Latypova,

Nestor Sukhodolsky, Alexander Shemenev Ivan Borodulin,

19 Investigation of the dependence of the quality of recognition of ontological objects on the depth of hyponymy. Code,

Report, LinkReview, Presentation

Вячеслав Резяпкин, Alexey Russkin,

Victoria Dochkina, Miron Kuznetsov, Yarmoshyk Demyan

20 Comparison of the quality of end-to-end trainable models in the task of answering questions in a dialogue, taking into account the context Code

LinkReview Report, Presentation

Agafonov Alexey, Ryakin Ilya,Litvinenko Vladimir,

Khokhlov Ivan, Velikovsky Nikita, Anufrienko Oleg

21 High order convex optimization methods Code,

LinkReview, Slides

Selikhanovich Daniel,

Sokolov Igor

23 Фрактальный анализ and синтез оптических изображений морского волнения code,

LinkReview, Presentation report

Каныгин Юрий
24 Максимизация энтропии при различных видах преобразований над изображением code,

LinkReview, report, slides

Никита Воскресенский,

Алиса Шабалина, Ярослав Мурзаев, Алексей Хохлов, Алексей Казаков, Ольга Грибова, Александр Белозерцев

25 Автоматическое детектирование and распознавание объектов на изображениях code,

code_A, Slides_for_demo, Report2018Project25_30 Report2018Project25_31 slides_30 slides_25_31 LinkReview

Юлия Демидова

Иван Разумов Владислав Томинин Ярослав Томинин Никита Дудоров Леонид Ерлыгин Прошутинский Дмитрий Баймаков Владимир Зубков Александр Черненкова Елена

26 Определение местоположения по сигналам акселерометра Code,

LinkReview, Slides, Текст

Эльвира Зайнулина

Фатеев Дмитрий Виталий Протасов Никита Божедомов

28 Мультимоделирование как универсальный способ описания выборки общего вида Code,

Linkreview, Slides, report

Владимир Качанов

Евгения Стрелкова

29 Cross-Language Document Extractive Summarization with Neural Sequence Model Code,

Linkreview, Report, Slides

Павел Захаров

Павел Кваша Евгений Дьячков Евгений Петров Илья Сельницкий

31 Pairwise energy matrix construction for inverse folding problem Code,

LinkReview Report Slides

Рубинштейн Александр
32 Smooth orientation-dependent scoring function Code

Отчёт

Носкова Елизавета

Качков Сергей Сидоренко Антон

Task 5

  • Name: Нахождение парафразов.
  • Task: Парафразы — разные вариации одного and того же текста, одинаковые по смыслу, но отличающиеся лексически and грамматически, например: "Куда поехала машина" and "В каком направлении поехал автомобиль". Task детектирования парафразов заключается в выделении в множестве текстов кластеров, таких что в каждом кластере содержатся только парафразы одного and того же предложения.

Самый простой способ выделения парафразов — кластеризация текстов, где каждый текст представлен "мешком слов".

  • . Data: Есть открытые датасеты вопросов для тестирования and обучения на kaggle.com, есть открытые данные для тестирования с конференций semeval.
  • References:
    1. Будет позже
  • Basic algorithm: Использовать для выделения парафразов какой-нибудь из алгоритмов кластеризации документов, где каждый документ представлен мешком слов или tf-idf.
  • Solution: Использовать нейросетевые архитектуры для поиска парафразов, использовать в качестве признаков словосочетания, выделенные с помощью синтаксических анализаторов, использовать многоуровневую кластеризацию.
  • Novelty: Отсутствие реализаций для русского языка, которые будут использовать синтаксические анализаторы для подобной задачи, все текущие решения достаточно "просты".
  • Authors: Артём Попов.

Task 6

  • Name: On conformational changes of proteins using collective motions in torsion angle space and L1 regularization.
  • Task: Torsion angles are the most natural degrees of freedom for describing motions of polymers, such as proteins. This is because bond lengths and bond angles are heavily constrained by covalent forces. Thus, multiple attempts have been done to describe protein dynamics in the torsion angle space. For example, one of us has developed an elastic network model (ENM) [1] in torsion angle space called Torsional Network Model (TNM) [2]. Functional conformational changes in proteins can be described in the Cartesian space using just a subset of collective coordinates [3], or even a sparse representation of these [4]. The latter requires a solution of a LASSO optimization problem [5]. The goal of the current project is to study if a sparse subset of collective coordinates in the torsion subspace can describe functional conformational changes in proteins. This will require a solution of a ridge regression problem with a L1 regularization constraint. The starting point will be the LASSO formulation.
  • . Data: Experimental conformations will be extracted from the Protein Docking Benchmark v5 (https://zlab.umassmed.edu/benchmark/) and a few others. The TNM model can be downloaded from https://ub.cbm.uam.es/tnm/tnm_soft_main.php
  • References:
    1. Tirion MM. (1996) Large Amplitude Elastic Motions in Proteins from a Single-Parameter, Atomic Anal- ysis. Phys Rev Lett. 77:1905–1908.
    2. Mendez R, Bastolla U. (2011) Torsional network model: normal modes in torsion angle space better correlate with conformation changes in proteins. Phys Rev Lett. 2010 104:228103.
    3. SwarmDock and the use of normal modes in protein-protein docking. IH Moal, PA Bates - International journal of molecular sciences, 2010
    4. Modeling protein conformational transition pathways using collective motions and the LASSO method. TW Hayes, IH Moal - Journal of chemical theory and computation, 2017
    5. https://en.wikipedia.org/wiki/Lasso_(statistics)
    6. E. Frezza, R. Lavery, Internal normal mode analysis (iNMA) applied to protein conformational flexibility, Journal of Chemical Theory and Computation 11 (2015) 5503–5512.
  • Basic algorithm: The starting point will be a combination of methods from references 2 and 4. It has to be a LASSO formulation with the direction vectors reconstructed from the internal coordinates. The quality will be computed based on the RMSD measure between the prediction and the solution on several benchmarks. Results will be presented with statistical plots (see examples in references 3-4.
  • Novelty: This is an important and open question in computational structural bioinformatics - how to efficiently represent transitions between protein structures. Not much has been done in the torsional angle subspace (internal coordinates)[6] and nearly nothing has been done using L1 regularization [4].
  • Authors: Ugo Bastolla on the torsional subspace (https://ub.cbm.uam.es/home/ugo.php), Sergei Grudinin on L1 minimization (https://team.inria.fr/nano-d/team-members/sergei-grudinin/)

Task 10

  • Name: Сравнение нейросетевых and непрерывно-морфологических методов в задаче детекции текста (Text Detection).
  • Task: Automatically Detect Text in Natural Images.
  • Data: синтетические сгенерированные данные + подготовленная выборка фотографий + COCO-Text dataset + Конкурс Avito 2014.
  • References:: COCO benchmark, One of a state-of-the-art architecture
  • Basic algorithm: code + морфологические методы, Avito 2014 winner’s solution.
  • Solution: Предлагается сравнить работы нескольких state-of-the-art алгоритмов, которым нужна обширная обучающая выборка, с морфологическими методы, требующие небольшого числа данных. Предлагается определить границы применимости тех или иных методов.
  • Novelty: предложить алгоритм, основанный на использовании как нейросетевых, так and морфологических методов (решение задачи word detection).
  • Authors: И. Н. Жариков.
  • Expert: Л. М. Местецкий (морфологические методы).

Task 16

  • Name: Оценка оптимального объема выборки для исследований в медицине
  • Task: В условиях недостаточного числа дорогостоящих измерений требуется спрогнозировать оптимальный объем пополняемой выборки.
  • Data: Выборки измерений в медицинской диагностике, в частности, выборка иммунологических маркеров.
  • References::
    • Мотренко А.П. Материалы по алгоритмам оценки оптимального объема выборки в репозитории MLAlgorithms[48], [49].
  • Basic algorithm: Серия эмпирических алгоритмов оценки объема выборки.
  • Solution: Исследование свойств пространства параметров при пополнении выборки.
  • Novelty: Предложена новая методология прогнозирования объема выборки, обоснованная с точки зрения классической and байесовской статистики.
  • Authors: А.М. Катруца, Strizhov V.V., координатор Tamaz Gadaev

Task 19

  • Name: Исследование зависимости качества распознавания онтологических объектов от глубины гипонимии.
  • Task: Необходимо исследовать зависимость качества распознавания онтологических объектов на различных уровнях гипонимии понятий. Классическая постановка задачи распознавания именованных сущностей: https://en.wikipedia.org/wiki/Named-entity_recognition
  • Data: Гипонимии из https://wordnet.princeton.edu/ , тексты разных доменов предположительно из WebOfScience.
  • References: Релевантные статьи для классической постановки http://arxiv-sanity.com/search?q=named+entity+recognition
  • Basic algorithm: В качестве алгоритма может использоваться https://arxiv.org/pdf/1709.09686.pdf или упрощенная его версия, исследования производятся с использованием библиотеки DeepPavlov.
  • Solution: Необходимо собрать датасет гипонимии (вложенности понятий) объектов с использованием WordNet, произвести автоматическую разметку онтологических объектов текстов различных доменов для нескольких уровней обобщения понятий, провести ряд экспериментов для определения качества распознавания онтологических объектов для разных уровней вложенности.
  • Novelty: Подобные исследования не производились, готовые датасеты с иерархической разметкой объектов отсутствуют. Распознавание онтологических объектов на различных уровнях гипонимии может быть использовано для производства дополнительных признаков при решении различных NLP (Natural language processing) задач, а также определения являются ли объекты парой гипоним-гипероним.
  • Authors: Бурцев Михаил Сергеевич (Expert), Баймурзина Диляра Римовна (consultant).

Task 20

  • Name: Сравнение качества end-to-end обучаемых моделей в задаче ответа на вопросы в диалоге с учетом контекста
  • Task: Задан фрагмент текста and несколько последовательных вопросов. Ответы на первые n вопросов известны. Нужно сформировать ответ на n+1 вопрос. В качестве ответа нужно указать непрерывный промежуток в тексте заданного фрагмента текста (номера начального and конечного слов). При оценке качества ответа Task сводится к классификации символов фрагмента на класс 0 (не входит в ответ) and 1 (входит в ответ).
  • Data: Предоставляется размеченный датасет с фрагментами текста and наборами вопросов с ответами в диалоге
  • References: Статья Bi-directional Attention Flow for Machine Comprehension (BiDAF2017) описывает end-to-end модель ответов на вопросы по фрагменту без учета контекста диалога. Статья QuAC: Question Answering in Context (QuAC2018) описывает набор данных, содержит описание используемого базового алгоритма с учетом контекста диалога. Статьи с описанием других моделей вопрос-ответных систем (R-Net, DrQA)
  • Basic algorithm: Basic algorithm описан статьях and реализован (QuAC2018, BiDAF2017).
  • Solution: Предлагается изучить механизмы учета контекста (k-ctx, append, etc) and исследовать возможность их добавления в другие модели (DrQA, R-NET), либо предложить собственные для повышения качества по мере F1. Для изучения поведения модели используется визуализация внимания (attention visualization), обучаемых эмбеддингов, а также анализ ошибочных ответов. Предоставляется доступ к вычислительным ресурсам, используемые фреймворки: TensorFlow, PyTorch или Keras.
  • Novelty: Исследование проводится на новом датасете, для которого на данный момент имеется только Basic algorithm. Подтверждение повышения качества от применения механизмов учета контекста диалога в других моделях указывает на применимость предлагаемых подходов для решения более широкого круга задач.
  • Authors: Антон Сергеевич Хританков

Task 21

  • Name: Методы выпуклой оптимизации высокого порядка
  • Task: Для выпуклых задач не очень больших размерностей эффективно (до n ~ 10^3 иногда даже до n ~ 10^4) применяются методы высокого порядка. До недавнего времени принято было считать, что это методы второго порядка (использующие вторые производные оптимизируемой функции). Однако в начале 2018 года Ю.Е. Нестеров [1] предложил в теории эффективный метод третьего порядка, который работает почти по оптимальным оценкам. В пособии [3] в упражнении 1.3 описан пример "плохой" выпуклой функции, предложенной Ю.Е. Нестеровым, на котором хотелось бы сравнить метод Нестерова второго and третьего порядка [1], метод из работы [2] второго and третьего порядка and обычные быстрые градиентные методы (первого порядка). Сравнивать стоит как по числу итераций, так and по общему времени работы.
  • References:
  1. https://alfresco.uclouvain.be/alfresco/service/guest/streamDownload/workspace/SpacesStore/aabc2323-0bc1-40d4-9653-1c29971e7bd8/coredp2018_05web.pdf?guest=true
  2. https://arxiv.org/pdf/1809.00382.pdf
  3. https://arxiv.org/pdf/1711.00394.pdf
  • Author: Евгения Алексеевна Воронцова (доцент ДВФУ, Владивосток), Александр Владимирович Гасников

Task 22

  • Name: Cutting plane methods for copositive optimization
  • Task: Conic program over the copositive cone (copositive program) min <C,X> : <A_i,X> = b_i, X \in \Pi_i C^k_i, k_i <= 5 A linear function is minimized over the intersection of an affine subspace with a product of copositive cones of orders k_i <= 5. Подробнее тут
  • Data: The algorithm will be tested on randomly generated instances
  • References:
    • [1] Peter J. C. Dickinson, Mirjam Dür, Luuk Gijben, Roland Hildebrand. Scaling relationship between the copositive cone and Parrilo’s first level approximation. Optim. Lett. 7(8), 1669—1679, 2013.
    • [2] Stefan Bundfuss, Mirjam Dür. Algorithmic copositivity detection by simplicial partition. Linear Alg. Appl. 428, 1511—1523, 2008.
    • [3] Mirjam Dür. Copositive programming — a Survey. In Recent advances in Optimization and its Applications in Engineering, Springer, pp. 3-20, 2010.
  • Basic algorithm: The reference algorithm is described in [4] Stefan Bundfuss, Mirjam Dür. An Adaptive Linear Approximation Algorithm for Copositive Programs. SIAM J. Optim., 20(1), 30-53, 2009.
  • Solution: The copositive program will be solved by a cutting plane algorithm. The cutting plane (in the case of an infeasible iterate) will be constructed from the semidefinite representation of the diagonal 1 section of the cone proposed in [1]. The algorithm will be compared to a simplicial division method proposed in [2], [4]. General information about copositive programs and their applications in optimization can be found in [3] .
  • Novelty: The proposed algorithm for optimization over copositive cones up to order 5 uses an exact semi-definite representation. In contrast to all other algorithms existing today the generation of cutting planes is non-iterative.
  • Автор: Roland Hildebrand

Task 23

  • Name: Фрактальный анализ and синтез оптических изображений морского волнения
  • Task: Разнообразные физические процессы and явления изучаются с помощью изображений, получаемых дистанционно. Важной задачей является получение адекватной информации об интересующих процессах and явлениях путём измерения определённых характеристик изображений. Линии равной яркости (изолинии) на изображениях многих природных объектов являются фрактальными, то есть представляют собой множества точек, которые не могут быть представлены линиями конечной длины and занимают промежуточное положение между линиями and двумерными плоскими фигурами. Такие множества характеризуются фрактальной размерностью D, которая обобщает классическое понятие размерности множества and может принимать дробные значения. Для уединённой точки на изображении D=0, для гладкой кривой D=1, для плоской фигуры D=2. Фрактальная изолиния имеет размерность 1<D<2. Алгоритм расчёта D приведён, например, в [1]. Фрактальная размерность изолиний морской поверхности, может служить для оценки пространственных спектров морских волн по данным дистанционного зондирования [1]. Task состоит в следующем. Необходимо провести исследование численными методами зависимости между характеристиками пространственных спектров морских волн and фрактальной размерностью спутниковых изображений Земли в области солнечного блика. Для исследования следует использовать метод численного синтеза оптических изображений морского волнения, описанный в [2]. Численное моделирование должно быть при различных характеристиках морских волн, а также при различных положениях Солнца and пространственном разрешении изображений.
  • References:
    1. Лупян Е. А., Мурынин А. Б. Возможности фрактального анализа оптических изображений морской поверхности. // Препринт Института Космических исследований АН СССР Пр.-1521, Москва, 1989, 30 с.
    2. Мурынин А. Б. Восстановление пространственных спектров морской поверхности по оптическим изображениям в нелинейной модели поля яркости // Исследования Земли из космоса, 1990. № 6. С. 60-70.
  • Author: Иван Алексеевич Матвеев

Task 24

  • Название Максимизация энтропии при различных видах преобразований над изображением
  • Task: Паншарпенинг — это алгоритм повышения разрешения мультиспектральных изображений с использованием опорного изображения. Task паншарпенинга формулируется следующим образом: имея панхроматическое изображение требуемого разрешения and мультиспектральное изображение пониженного разрешения, требуется восстановить мультиспектральное изображение в пространственном разрешении панхроматического. Из эмпирических наблюдений, основанных на большом количестве снимков высокого разрешения, известно, что пространственная вариативность интенсивности отраженного излучения для объектов одной природы гораздо больше, чем вариативность их спектра. Другими словами, можно наблюдать, что спектр отраженного излучения однороден в границах одного объекта, в то время как даже внутри одного объекта интенсивность отраженного излучения варьируется. На практике хороших результатов можно достигнуть, используя упрощенный подход, при котором считается, что если интенсивность соседних областей значительно отличается, то, вероятно, эти области принадлежат разным объектам с разными отраженными спектрами. На этом основан разработанный вероятностный алгоритм повышения разрешения мультиспектральных изображений с использованием опорного изображения [1]
  • Необходимо провести исследование по максимизации энтропии при различных видах преобразований над изображением. Показать, что энтропия может служить индикатором потерь информации, содержащейся в изображении, при преобразованиях над ним. Формулировка обратной задачи по восстановлению изображения: Условие 1: Соответствие интенсивности (в каждой точке) восстановленного изображения интенсивности панхромного изображения. Условие 2: Соответствие низкочастотной составляющей восстановленного изображения исходному мультиспектральному изображению. Условие 3: Однородность (подобность) спектра в пределах одного объекта and допущение скачкообразного изменения спектра на границе двух однородных областей. Условие 4: При соблюдении первых трех условий, локальная энтропия восстановленного изображения должна быть максимизирована.
  • References:
    1. Гороховский К. Ю., Игнатьев В. Ю., Мурынин А. Б., Ракова К. О. Поиск оптимальных параметров вероятностного алгоритма повышения пространственного разрешения мультиспектральных спутниковых изображений // Известия РАН. Теория and системы управления, 2017, № 6.
  • Author: Иван Алексеевич Матвеев

Task 25

  • Name: Автоматическое детектирование and распознавание объектов на изображениях
  • Task: Автоматическое детектирование and распознавание объектов на изображениях and видео является одной из основных задач компьютерного зрения. Как правило, эти задачи разбиваются на несколько подзадач: предобработка, выделение характерных свойств изображения объекта and классификация. Этап предобработки обычно включает некоторые операции с изображением, такие как фильтрация, выравнивание яркости, геометрические корректирующие преобразования для облегчения устойчивого выделения признаков.

Под характерными свойствами изображения объекта понимается некоторый набор признаков, приближённо описывающий интересующий объект. Признаки можно разбить на два класса: локальные and интегральные. Преимуществом локальных признаков является их универсальность, инвариантность по отношению к неравномерным изменениям яркости and освещённости, но они не уникальны. Интегральные признаки, характеризующие изображение объекта в целом, не устойчивы к изменению структуры объекта and сложным условиям освещения. Существует комбинированный подход — использование локальных признаков в качестве элементов интегрального описания, когда искомый объект моделируется набором областей, каждая из которых характеризуется своим набором признаков — локальным текстурным дескриптором. Совокупность таких дескрипторов характеризует объект в целом. Под классификацией понимают определение принадлежности объекта к тому или иному классу путём анализа вектора признаков, полученного на предыдущем этапе, разделения признакового пространства на подобласти, указывающие на соответствующий класс. Существует множество подходов к классификации: нейросетевые, статистические (Байеса, регрессия, Фишера and др.), решающие деревья and леса, метрические (ближайшие К-соседей, парзеновские окна и т. д.) and ядерные (SVM, RBF, метод потенциальных функций), композиционные (AdaBoost). Для задачи обнаружения объекта на изображении оценивается принадлежность двум классам — классу изображений, содержащих объект, and классу изображений, не содержащих объект (изображениям фона).


Task 29

  • Name: Cross-Language Document Extractive Summarization with Neural Sequence Model.
  • Task: Предлагается решить задачу переноса обучения для модели сокращения текста выделением предложением (extractive summarization) and исследовать зависимость качества сокращения текста от качества обучения модели перевода. Имея данные для обучения модели сокращения на английском языке and параллельный англо-русский корпус текстов построить модель для сокращения текста на русском языке. Решение задачи оценивается на небольшом наборе данных для тестирования модели на русском языке, качество решения задачи определяется отношением значений критериев ROUGE на английском and русском наборах.
  • Data: Данные для обучения модели на английском языке (SummaRuNNer2016), параллельный корпус OPUS, данные для проверки на русском языке.
  • References: В статье (SummaRuNNer2016) дается описание базового алгоритма сокращения текста, в работе Neural machine translation by jointly learning to align and translate.(NMT2016) дается описание модели перевода. Идея совместного использования моделей представлена в статье Cross-Language Document Summarization Based on Machine Translation Quality Prediction (CrossSum2010).
  • Basic algorithm: Одна из идей базового алгоритма представлена в (CrossSum2010), модель перевода реализована (OpenNMT), предоставляется реализация модели сокращения текста (SummaRuNNer2016).
  • Solution: Предлагается исследовать идею решения, предложенную в статье (CrossSum2010) and варианты объединения моделей сокращения and перевода. Базовые модели and предобработка наборов данных реализованы (OpenNMT), библиотеки PyTorch and Tensorflow. Анализ ошибок по сокращению текста производится, как описано в (SummaRuNNer2016), анализ качества обучения моделей стандартными инструментами библиотек, .
  • Novelty: Для базовой модели применимость исследована на паре наборов данных, подтверждение возможности переноса обучения на набор данных на другом языке and указание условий для этого переноса расширит область применения модели and укажет необходимые новые доработки модели или предобработки данных.
  • Authors: Алексей Романов (consultant), Anton Khritankov (Expert).

Task 30

  • Name: Метод построения HG-LBP дескриптора на основе гистограмм градиентов для детектирования пешеходов.
  • Task: Предлагается разработать новый дескриптор, обобщающий LBP дескриптор на основе гистограмм модулей градиентов, имеющий свойства композиции HOG-LBP для задачи детектирования пешеходов на изображении. В качестве анализа качества нового дескриптора предлагается использовать графики ошибок детектирования FAR/FRR на базе INRIA.
  • Data: База данных пешеходов INRIA: http://pascal.inrialpes.fr/data/human/
  • References:
    1. 1. T. Ojala and M. Pietikainen. Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns, IEEE Trans on Pattern Analysis and Machine Intelligence, Vol. 24. No.7, July, 2002.
    2. 2. T. Bouwmans, C. Silva, C. Marghes, M. Zitouni, H. Bhaskar, C. Frelicot,, «On the Role and the Importance of Features for Background Modeling and Foreground Detection», https://arxiv.org/pdf/1611.09099v1.pdf
    3. 3. N. Dalal and B. Triggs, Histograms of Oriented Gradients for Human Detection // Proc. IEEE Conference on Computer Vision and Pattern Recognition, 2005, pp.886-893
    4. 4. T. Ahonen, A. Hadid, M. Pietikainen Face Description with Local Binary Patterns: Application to Face Recognition \\ IEEE Transactions on Pattern Analysis and Machine Intelligence, Volume:28 , Issue: 121.
    5. 5. http://www.magicandlove.com/blog/2011/08/26/people-detection-in-opencv-again/
    6. 6. http://www.cse.oulu.fi/CMV/Downloads/LBPMatlab2.
    7. 7. http://www.mathworks.com/help/vision/ref/extractlbpfeatures.html3.
    8. 8. http://www.codeproject.com/Articles/741559/Uniform-LBP-Features-and-Spatial-Histogram-Computa4.
    9. 9. http://www.cse.oulu.fi/CMV/Research
  • Basic algorithm: Xiaoyu Wang, Tony X. Han, Shuicheng Yan. An HOG-LBP Human Detector with Partial Occlusion Handling \\ ICCV 2009
  • Solution: Одним из вариантов обобщения LBP может быть использование вместо гистограмм распределения точек по LBP-коду, гистограмм распределения модулей градиентов точек в блоке по LBP-коду (HG-LBP). Предлагается для основы экспериментов использовать библиотеку OpenCV, в которой реализованы алгоритмы HOG and LBP. Необходимо модифицировать исходный код реализации LBP and вставить подсчет модулей градиента and накопление соответствующей гистограммы по LBP. Необходимо написать программу чтения базы INRIA, обучения по ней метода линейного SVM на исходных and модифицированных дескрипторах, сбора статистики детектирования and построения DET-графиков FAR/FRR.
  • Novelty: Разработка вычислительно простых методов для выделения максимально информативных признаков в Taskх распознавания является актуальной в области создания встроенных систем, обладающих малыми вычислительными ресурсами. Замена композиции дескрипторов одним, более информативным, чем каждый по отдельности может упростить решение задачи. Использование значений градиента в гистограммах дескриптора LPB является новым.
  • Authors: Гнеушев Александр Николаевич

Task 31

  • Name: Использование HOG дескриптора для обучения нейронной сети в задаче детектирования пешеходов
  • Task: Предлагается заменить линейный SVM классификатор в классическом алгоритме HOG простой сверточной нейронной сетью небольшой глубины, при этом HOG дескриптор должен представляться трехмерным тензором, сохраняющим пространственную структуру локальных блоков. В качестве анализа качества нового дескриптора предлагается использовать графики ошибок детектирования FAR/FRR на базе INRIA.
  • Data: База данных пешеходов INRIA: http://pascal.inrialpes.fr/data/human/
  • References:
    1. 1. N. Dalal and B. Triggs, Histograms of Oriented Gradients for Human Detection // Proc. IEEE Conference on Computer Vision and Pattern Recognition, 2005, pp.886-893
    2. 3. Q. Zhu, S. Avidan, M.-C. Yeh, and K.-T. Cheng. Fast human detection using a cascade of histograms of oriented gradients. In CVPR, pages 1491—1498, 2006 O. Tuzel, F. Porikli, and P. Meer. Human detection via classification on riemannian manifolds. In CVPR, 2007
    3. 4. P. Dollar, C. Wojek, B. Schiele and P. Perona Pedestrian Detection: An Evaluation of the State of the Art / IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), Vol 34. Issue 4, pp. 743—761
    4. 5. Xiaoyu Wang, Tony X. Han, Shuicheng Yan, An HOG-LBP Human Detector with Partial Occlusion Handling, ICCV 2009 http://www.xiaoyumu.com/s/PDF/Wang_HOG_LBP.pdf
    5. 6. https://en.wikipedia.org/wiki/Pedestrian_detection
    6. 7. HOG person detector tutorial https://chrisjmccormick.wordpress.com/2013/05/09/hog-person-detector-tutorial/
    7. 8. NavneetDalalThesis.pdf Navneet Dalal. Finding People in Images and Videos. PhD Thesis. Institut National Polytechnique de Grenoble / INRIA Rhone-Alpes, Grenoble, July 2006)
    8. 9. People Detection in OpenCV http://www.magicandlove.com/blog/2011/08/26/people-detection-in-opencv-again/
    9. 10. Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
  • Basic algorithm:
    1. 1. N. Dalal and B. Triggs, Histograms of Oriented Gradients for Human Detection // Proc. IEEE Conference on Computer Vision and Pattern Recognition, 2005, pp.886-893
    2. 2. Xiaoyu Wang, Tony X. Han, Shuicheng Yan, An HOG-LBP Human Detector with Partial Occlusion Handling, ICCV 2009
  • Solution: Одним из вариантов обобщения алгоритма HOG может быть использование вместо линейного алгоритма SVM другого классификатора, например какой-либо нейронной сети. Предлагается для основы экспериментов использовать библиотеку OpenCV, в которой реализован алгоритм HOG and классификатор SVM. Нужно проанализировать исходный код реализации HOG, формализовать внутреннюю структуру вектора HOG дескриптора в форме трехмерного тензора — две пространственные and одна спектральная размерности. Необходимо написать программу чтения базы INRIA, обучения по ней метода линейного SVM на HOG-дескрипторах, сбора статистики детектирования and построения DET-графиков FAR/FRR. Необходимо на основе какой-либо системы обучения нейросети (например, mxnet) собрать неглубокую (не более 2-3 сверточных слоев) сверточную нейросеть известной архитектуры, обучить ее на базе INRIA and на тензорных дескрипторах HOG, построить соответствующие графики FAR/FRR.
  • Novelty: Разработка вычислительно простых методов для выделения максимально информативных признаков в Taskх распознавания является актуальной в области создания встроенных систем, обладающих малыми вычислительными ресурсами. Использование небольшого количества наиболее информативных дескрипторов может уменьшить вычислительную сложность, по сравнению с использованием большой композиции простых признаков, например в глубокой сверточной нейросети. Обычно классификаторы используют HOG дескриптор как вектор в целом, однако при этом теряется информация о локальной пространственной структуре and спектре признаков. Новизна заключается в использовании свойства локальности блоков в HOG дескрипторе and представление HOG в виде трехмерного тензора. Использование этой информации позволяет достичь устойчивости детектирования к перекрытию пешехода.
  • Authors: Гнеушев Александр Николаевич

YEAR

Author Topic Links Consultant Reviewer Report Letters \Sigma=3+13
Гончаров Алексей (пример) Метрическая классификация временных рядов code,

paper, slides

Maria Popova Задаянчук Андрей BMF AILSBRCVTDSWH>
Астахов Антон Восстановление структуры прогностической модели по вероятностному представлению folder

code paper

Александр Катруца Кислинский Вадим BHF A-I-L0S0B0R0C0V0T0 [A-I-L-S-B0R0C0V0T0E0D0W0S] + [AILSBRCBTEDWS] 2+4
Гаврилов Юрий Выбор интерпретируемых мультимоделей в Taskх кредитного скоринга folder

code paper video

А.В. Гончаров Остроухов Петр BF A+IL-S0B-R0 [A+ILSBRC-VT0E0D0W0S] + (W) 2+9+1
Gadaev Tamaz Оценка оптимального объема выборки folder

code paper slides video

Александр Катруца Шульгин Егор BHF A-IL>SB-R-C0V0T0 [AILSBR0CVT0E-D0W0S] 2+9
Гладин Егор Экономия заряда акселерометра на основе прогнозирования временных рядов folder

code paper slides

Мария Владимирова Козлинский Евгений

review

.F AILS [A-I-L-SB0R0C000V0T0E0D0W0S] 1+4
Грабовой Андрей Автоматическое определение релевантности параметров нейросети. folder

code paper slides video

Oleg BakhteevЮ. Кульков Александр BHMF A+ILS+BRC+VTE>D> [AILSBRCVTEDWS] [\emptyset] 3+13
Нурланов Жакшылык Deep Learning for reliable detection of tandem repeats in 3D protein structures folder

code paper slides video

С. В. Грудинин, Guillaume Pages Плетнев Никита

Review

BHF AILB [A-I-LS-BRC0V0T-E0D0W0S] 2+7
Рогозина Анна Deep learning for RNA secondary structure prediction folder

code paper slides video

Maria Popova Gadaev Tamaz BHMF AILSBR> [AILSBRC0V0T0E0D0W0S]+CW 3+9
Терехов Олег Порождение признаков с помощью локально-аппроксимирующих моделей folder

code paper slides

С.Д. Иванычев, Р.Г.Нейчев Гладин Егор

review

BHM AILSBRCVTDSW [AIL0SB0R0C0V0TE0D0W0S] 2+12
Шульгин Егор Порождение признаков, инвариантных к изменению частоты временного ряда folder

code paper

Р.Г.Нейчев Терехов Олег BHM AIL [AI-LS-BR0CV0T0E0D0W0S] 2+5
Малиновский Григорий Предсказание графовой структуры нейросетевой модели folder

code paper slides video

Oleg BakhteevЮ. Грабовой Андрей

review

BHMF A+I+L+SBR>C>V>T>E>D> [AILSBRC0VTED0WS]+(C) 3+11
Кульков Александр Декодирование сигналов мозга and прогнозирование намерений folder

code paper slides video

Р.В. Исаченко Малиновский Григорий

review

BHMF AILSBR [AILSBRCVTED0W0S] 3+11
Плетнев Никита Аппроксимация границ радужки глаза paper

slides [ video]

Alexander Aduenko Нурланов Жакшылык BF AILSB>R> [AILSTWS] 2+7
Остроухов Петр Selection of models superposition for identification of a person on the basis of a ballistocardiogram folder

paper code slides

Александр Прозоров Гаврилов Юрий

review

BhF AIL>S?B?R? [AILSBRCVT-E0D0W0S] 2+10
Кислинский Вадим Предсказание музыкальных плейлистов пользователей в рекомендательной системе. folder

code slides paper video

Евгений Фролов Астахов Антон .F (AIL)------(SB)---(RCVT)-- [AILS-BRCVTED0W0S] 1+11
Козлинский Евгений Анализ банковских транзакционных данных физических лиц для выявления паттернов потребления клиентов. folder

code paper slides video

Роза Айсина Рогозина Анна

review

BHMF AILSBR>CV> [AILSBR0C0V0TE0D0WS]+(С) 3+8+1


Task 1

  • Name: Аппроксимация границ радужки глаза
  • Task: По изображению человеческого глаза определить окружности, аппроксимирующие внутреннюю and внешнюю границу радужки.
  • Data: Растровые монохромные изображения, типичный размер 640*480 пикселей (однако, возможны and другие размеры)[50], [51].
  • References::
    • Адуенко А.А. Выбор мультимоделей в Taskх классификации (научный руководитель Strizhov V.V.). Московский физико-технический институт, 2017. [52]
    • К.А.Ганькин, А.Н.Гнеушев, И.А.Матвеев Сегментация изображения радужки глаза, основанная на приближенных методах с последующими уточнениями // Известия РАН. Теория and системы управления, 2014, № 2, с. 78–92.
    • Duda, R. O. Use of the Hough transformation to detect lines and curves in pictures / R. O. Duda, P. E. Hart // Communications of the ACM. 1972. Vol. 15, no. 1. Pp.
  • Basic algorithm: Ефимов Юрий. Поиск внешней and внутренней границ радужки на изображении глаза методом парных градиентов, 2015.
  • Solution: См. Iris_circle_problem.pdf
  • Novelty: Предложен быстрый беспереборный алгоритм аппроксимации границ с помощью линейных мультимоделей.
  • consultant: Alexander Aduenko (автор Strizhov V.V., Expert Matveev I.A.)

Task 2

  • Name: Оценка оптимального объема выборки
  • Task: В условиях недостаточного числа дорогостоящих измерений требуется спрогнозировать оптимальный объем пополняемой выборки.
  • Data: Выборки измерений в медицинской диагностике, в частности, выборка иммунологических маркеров.
  • References::
    • Мотренко А.П. Материалы по алгоритмам оценки оптимального объема выборки в репозитории MLAlgorithms[53], [54].
  • Basic algorithm: Алгоритмы оценки объема выборки при .
  • Solution: Исследование свойств пространства параметров при пополнении выборки.
  • Novelty: Предложена новая методология прогнозирования объема выборки, обоснованная с точки зрения классической and байесовской статистики.
  • Authors: А.М. Катруца, Strizhov V.V., Expert А.П. Мотренко

Task 3

  • Name: Восстановление структуры прогностической модели по вероятностному представлению
  • Task: Требуется восстановить дерево суперпозиции по порожденному графу вероятностей связей.
  • Data: Сегменты временных, пространственно-временных рядов (и текстовые коллекции).
  • References::
    • Работы Tommy Yakkola and других в LinkReview [55].
  • Basic algorithm: Метод ветвей and границ, динамическое пограммирование при построении полносвязного графа.
  • Solution: Построение модели в виде GAN, VAE порождает взвешенный граф, NN аппроксимирует структуру дерева.
  • Novelty: Предложен способ оштрафовать граф за то, что он не является деревом. Предложен способ прогнозирования структур прогностических моделей.
  • Authors: А.М. Катруца, Strizhov V.V.

Task 4

  • Name: Распознавание текста на основе скелетного представления толстых линий and сверточных сетей
  • Task: Требуется построить две CNN, одна распознает растровое представление изображения, другая векторное.
  • Data: Шрифты в растровом представлении.
  • References:: Список работ [56], в частности arXiv:1611.03199 and
  • Basic algorithm: Сверточная сеть для растрового изображения.
  • Solution: Требуется предложить способ свертывания графовых структур, позволяющий породить информативное описание скелета толстой линии.
  • Novelty: Предложен способ повышения качества распознавания толстых линий за счет нового способа порождения их описаний.
  • Authors: Л.М. Местецкий, И.А. Рейер, Strizhov V.V.

Task 5

  • Name: Порождение признаков с помощью локально-аппроксимирующих моделей
  • Task: Требуется проверить выполнимость гипотезы о простоте выборки для порожденных признаков. Признаки - оптимальные параметры аппроксимирующих моделей. При этом вся выборка не является простой and требует смеси моделей для ее аппроксимации. Исследовать информативность порожденных признаков - параметров аппроксимирующих моделей, обученных на сегментах исходного временного ряда.
  • Data:
    • WISDM (Kwapisz, J.R., G.M. Weiss, and S.A. Moore. 2011. Activity recognition using cell phone accelerometers. ACM SigKDD Explorations Newsletter. 12(2):74–82.), USC-HAD или сложнее. Данные акселерометра (Human activity recognition using smart phone embedded sensors: A Linear Dynamical Systems method, W Wang, H Liu, L Yu, F Sun - Neural Networks (IJCNN), 2014)
    • (Временной ряд (библиотека примеров), раздел Accelerometry).
  • References::
    • Kuznetsov M.P., Ivkin N.P. Алгоритм классификации временных рядов акселерометра по комбинированному признаковому описанию // Машинное обучение and анализ данных. 2015. T. 1, № 11. C. 1471-1483.[57]
    • Карасиков М.Е., Strizhov V.V. Классификация временных рядов в пространстве параметров порождающих моделей // Информатика and ее применения, 2016.URL
    • Kuznetsov M.P., Ivkin N.P. Алгоритм классификации временных рядов акселерометра по комбинированному признаковому описанию // Машинное обучение and анализ данных. 2015. T. 1, № 11. C. 1471 - 1483. URL
    • Isachenko R.V., Strizhov V.V. Метрическое обучение в Taskх многоклассовой классификации временных рядов // Информатика and ее применения, 2016, 10(2) : 48-57. URL
    • Zadayanchuk A.I., Popova M.S., Strizhov V.V. Выбор оптимальной модели классификации физической активности по измерениям акселерометра // Информационные технологии, 2016. URL
    • Motrenko A.P., Strijov V.V. Extracting fundamental periods to segment human motion time series // Journal of Biomedical and Health Informatics, 2016, Vol. 20, No. 6, 1466 - 1476. URL
    • Ignatov A., Strijov V. Human activity recognition using quasiperiodic time series collected from a single triaxial accelerometer // Multimedia Tools and Applications, 2015, 17.05.2015 : 1-14. URL
  • Basic algorithm: Описан в работе Кузнецова, Ивкина.
  • Solution: Требуется построить набор локально-аппроксимирующих моделей and выбрать наиболее адекватные.
  • Novelty: Создан стандарт построения локально-аппроксимирующих моделей.
  • Authors: С.Д. Иванычев, Р.Г. Нейчев, Strizhov V.V.

Task 6

  • Name: Декодирование сигналов мозга and прогнозирование намерений
  • Task: Требуется построить модель, восстанавливающую движение конечностей по кортикограмме.
  • Data: neurotycho.org [58]
  • References::
    • Нейчев Р.Г., Катруца А.М., Strizhov V.V. Выбор оптимального набора признаков из мультикоррелирующего множества в задаче прогнозирования // Заводская лаборатория. Диагностика материалов, 2016, 82(3) : 68-74. [59]
    • MLAlgorithms: Motrenko, Isachenko (submitted)
  • Basic algorithm: Partial Least Squares[60]
  • Solution: Создать алгоритм выбора признаков, альтернативный PLS and учитывающий неортогональную структуру взаимозависимости признаков.
  • Novelty: Предложен способ выбора признаков, учитывающий закономерности как and независимой, так and в зависимой переменной.
  • Authors: Р.В. Исаченко, Strizhov V.V.

Task 7

  • Name: Автоматическое определение релевантности параметров нейросети.
  • Task: Рассматривается Task нахождения устойчивой (и не избыточной по параметрам) структуры нейросети. Для отсечения избыточных параметров предлагается ввести априорные вероятностные предположения о распределении параметров and удалить из нейросети неинформативные параметры методом Белсли. Для настройки априорного распределения предлагается использовать градиентные методы.
  • Data: Выборка рукописных цифр MNIST
  • Basic algorithm: Optimal Brain Damage, прореживание на основе вариацинного вывода. Структуру итоговой модели предлагается сравнивать с моделью, полученной алгоритмом AdaNet.
  • References::
    • [61] Градиентные методы оптимизации гиперпараметров.
    • [62] Градиентные методы оптимизации гиперпараметров.
    • [63] Optimal Brain Damage.
    • [64] AdaNet
    • [65] Метод Белсли
  • Authors: Oleg Bakhteev, Strizhov V.V.

Task 8

  • Name: Предсказание графовой структуры нейросетевой модели.
  • Task: Рассматривается Task нахождения устойчивой (и не избыточной по параметрам) структуры сверточной нейросети. Предлагается предсказывать структуру нейросети с использованием doubly-recurrent нейросетей. В качестве обучающей выборки предлагается использовать структуры моделей, показавших хорошее качество на подвыборках небольшой мощности.
  • Data: Выборки MNIST, CIFAR-10
  • Basic algorithm: случайный поиск. Возможно сравнение с работами по обучению с подкреплением.
  • References::
    • [66] doubly-recurrent нейросети.
    • [67] Схожий подход с использованием обучения с подкреплением.
  • Authors: Oleg Bakhteev. Strizhov V.V.

Task 9

  • Name: Deep Learning for reliable detection of tandem repeats in 3D protein structures подробнее в PDF
  • Task: Deep learning algorithms pushed computer vision to a level of accuracy comparable or higher than a human vision. Similarly, we believe that it is possible to recognize the symmetry of a 3D object with a very high reliability, when the object is represented as a density map. The optimization problem includes i) multiclass classification of 3D data. The output is the order of symmetry. The number of classes is ~10-20 ii) multioutput regression of 3D data. The output is the symmetry axis (a 3-vector). The input data are typically 24x24x24 meshes. The total amount of these meshes is of order a million. Biological motivation : Symmetry is an important feature of protein tertiary and quaternary structures that has been associated with protein folding, function, evolution, and stability. Its emergence and ensuing prevalence has been attributed to gene duplications, fusion events, and subsequent evolutionary drift in sequence. Methods to detect these symmetries exist, either based on the structure or the sequence of the proteins, however, we believe that they can be vastly improved.
  • Data: Synthetic data are obtained by ‘symmetrizing’ folds from top8000 library (http://kinemage.biochem.duke.edu/databases/top8000.php).
  • References:: Our previous 3D CNN: [68] Invariance of CNNs (and references therein): [69], [70]
  • Basic algorithm: A prototype has already been created using the Tensorflow framework [4], which is capable to detect the order of cyclic structures with about 93% accuracy. The main goal of this internship is to optimize the topology of the current neural network prototype and make it rotational and translational invariant with respect to input data. [4] [71]
  • Solution: The network architecture needs to be modified according to the invariance properties (most importantly, rotational invariance). Please see the links below [72],

[73] The code is written using the Tensorflow library, and the current model is trained on a single GPU (Nvidia Quadro 4000)of a desktop machine.

  • Novelty: Applications of convolutional networks to 3D data are still very challenging due to large amount of data and specific requirements to the network architecture. More specifically, the models need to be rotationally and transnationally invariant, which makes classical 2D augmentation tricks loosely applicable here. Thus, new models need to be developed for 3D data.
  • Authors: Expert Sergei Grudinin, consultants Guillaume Pages, Strizhov V.V.

Task 10

  • Name: Semi-supervised representation learning with attention
  • Task: обучение векторных представлений с использованием механизма attention, благодаря которому значительно выросло качество машинного перевода. Предлагается использовать его в сети архитектуры encoder-decoder для получения векторов фрагментов текста произвольной длины.
  • Data: Предлагается рассмотреть две выборки: Microsoft Paraphrase Corpus (небольшой набор предложений, https://www.microsoft.com/en-us/download/details.aspx?id=52398) and PPDB(набор коротких сегментов, не всегда корректная разметка. http://sitem.herts.ac.uk/aeru/ppdb/en/)
  • References::

1. Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin. Attention Is All You Need (https://arxiv.org/abs/1706.03762). 2. John Wieting, Mohit Bansal, Kevin Gimpel, Karen Livescu. Towards Universal Paraphrastic Sentence Embeddings (https://arxiv.org/abs/1511.08198). 3. Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov, Richard S. Zemel, Antonio Torralba, Raquel Urtasun, Sanja Fidler. Skip-Thought Vectors (https://arxiv.org/abs/1506.06726). 4. Keras seq2seq (https://github.com/farizrahman4u/seq2seq).

  • Basic algorithm: решение [3] или векторные представления, полученные с использованием seq2seq [].
  • Solution: в задаче предлагается обучить векторные представления для фраз, используя механизм attention and метод частичного обучения. В качестве внутреннего функционала качества предлагается использовать усовершенствованную функцию ошибки из [2]. В качестве прикладной задачи можно рассмотреть задачу детектирования перефразирований and сентимент-анализ. Причем, исходя из результатов, полученный в [1], можно сделать предположение о том, что механизм attention в большей степени влияет на получение универсальных векторов для фраз, чем архитектура сети. Предлагается протестировать эту гипотезу с использованием двух различных архитектур - стандартной рекуррентной and feed-forward сети.
  • Novelty: новый метод.
  • Authors: Рита Кузнецова, consultant

Task 11

  • Name: Выбор интерпретируемых мультимоделей в Taskх кредитного скоринга
  • Task: Task кредитного скоринга заключается в определении уровня кредитоспособности заемщика. Для этого используется анкета заемщика, содержащая как числовые (возраст, доход), так and категориальные признаки (пол, профессия). Требуется, имея историческую информацию о возвратах кредитов другими заемщиками, определить, вернет ли заемщик кредит. Данные могут быть разнородными (например, в случае наличия в стране разных регионов по доходу), and для адекватной классификации потребуется несколько моделей. Необходимо определить оптимальное число моделей. По набору параметров моделей необходимо составить портрет заемщика.
  • Data: Предлагается рассмотреть пять выборок из репозиториев UCI and Kaggle, мощностью от 50000 объектов.
  • References:: Диссертация А.А. Адуенко \MLAlgorithms\PhDThesis; С. Bishop, Pattern recognition and machine learning, последняя глава; 20 years of Mixture experts.
  • Basic algorithm: Кластеризация and построение независимых моделей логистической регрессии, Адабуст, Решающий лес (с ограничениями на сложность), Смесь Expertов.
  • Solution: Предлагается алгоритм выбора мультимодели (смеси моделей или смеси Expertов) and определения оптимального числа моделей.
  • Novelty: Предлагается функция расстояния между моделями, в которых распределения параметров заданы на разных носителях.
  • Authors: А.В. Гончаров, Strizhov V.V..

Task 12

  • Name: Порождение признаков, инвариантных к изменению частоты временного ряда.
  • Task: Неформально: есть набор временных рядов определенной частоты (s1), причем интересующая нас информация различима and при меньшей частоте дискретизации (например, отсчеты происходят каждую миллисекунду, а интересующие нас события происходят на интервале 0.1 с). Данные ряды интегрируются, снижая частоту в 10 раз (т.е. каждые 10 значений просто суммируются) and получается набор временных рядов s2.Предлагается найти такие преобразования над временным рядом, зависящие от частоты, что временные ряды высокой частоты s1и более низкой частоты s2 будут описываться одинаково. Формально: Задан набор временных рядов s1, .., sNSс высокой частотой дискретизации 1. Целевая информация (например, движение рукой/cуточное колебание цены/…) различима and при меньшей частоте дискретизации 2 < 1. Необходимо найти такое отображение f: S G, -частота ряда, что оно будет порождать похожие признаковые описания для рядов различной частоты. Т.е.

f* = argminf E(f1(s1) -f2(s2)) , где E- некоторая функция ошибки.

  • Data: Наборы временных рядов физической активности людей с акселерометров; временные ряды ЭЭГ человека; временные ряды энергопотребления городов/промышленных объектов. Ссылка на выборку: репозиторий UCI, наши выборки по ЭЭГ and акселерометрам.
  • References:: См выше про Акселерометры
  • Basic algorithm: Преобразование Фурье.
  • Solution: Построение автоэнкодера с частично фиксированным внутренним представлением в виде того же временного ряда с меньшей частотой.
  • Novelty: Для временных рядов отсутствует “общепринятый подход” к анализу, в отличие, например, от анализа изображений. Если посмотреть на проблему отвлеченно, сейчас кот определяется так же хорошо, как and кот, занимающий вдвое меньшее пространство на изображении. Напрашивается аналогия с временными рядами. Тем более, природа данных в картинках and во временных рядах похожа: в картинках иерархия между значениями есть по двум осям (x and y), а во временных рядах - по одной - по оси времени. Гипотеза заключается в том, что сходные с анализом изображений методы позволят получить качественные результаты. Полученное признаковое представление может в дальнейшем использоваться для классификации and предсказания временных рядов.
  • Authors: R. G. Neichev, Strizhov V.V..

Task 14

to be done

Task 15

to be done

  • Name: Иерархическое тематическое моделирование текстовой коллекции
  • Task: (варианты: новостной поток на русском / выпускные работы studentов на русском / научные статьи на английском / научпоп на русском).
  • Data:
  • References::
    1. Воронцов К.В. Обзор вероятностных тематических моделей. 2017.
  • Basic algorithm:
  • Solution: построение тематической модели с помощью библиотеки BigARTM.
  • Novelty:
  • Authors: Vorontsov K. V.

Task 16

to be done

  • Name: Анализ банковских транзакционных данных физических лиц для выявления паттернов потребления клиентов.
  • Task:
  • Data:
  • References::
    1. Воронцов К.В. Обзор вероятностных тематических моделей. 2017.
  • Basic algorithm:
  • Solution: построение тематической модели с помощью библиотеки BigARTM.
  • Novelty:
  • Authors: Vorontsov K. V., consultants Роза Айсина, Philip Nikitin.

Task 17

to be done

Task 18

  • Name: Сравнение нейросетевых and непрерывно-морфологических методов в задаче детекции текста (Text Detection).
  • Task: Automatically Detect Text in Natural Images.
  • Data: синтетические сгенерированные данные + подготовленная выборка фотографий + COCO-Text dataset + Конкурс Avito 2014.
  • References:: COCO benchmark, One of a state-of-the-art architecture
  • Basic algorithm: code + морфологические методы, Avito 2014 winner's solution.
  • Solution: Предлагается сравнить работы нескольких state-of-the-art алгоритмов, которым нужна обширная обучающая выборка, с морфологическими методы, требующие небольшого числа данных. Предлагается определить границы применимости тех или иных методов.
  • Novelty: предложить алгоритм, основанный на использовании как нейросетевых, так and морфологических методов (решение задачи word detection).
  • Authors: И.Н. Жариков.
  • Expert: Л.М. Местецкий (морфологические методы).

YEAR

Group 594

Author Topic Link Consultant Reviewer Report Letters \Sigma=3+13
Гончаров Алексей (пример) Метрическая классификация временных рядов code,

paper, slides

Maria Popova Задаянчук Андрей BMF AILSBRCVTDSWH>
Белых Евгений Проскурин Александр Классификация суперпозиций движений физической активности paper

slides code

Мария Владимирова, Александра Малькова Романенко Илья, Поповкин Андрей, review

video

MF AILSBRC>V> [AILSBRC0VT0E0D0WS] CTD 2+9
Зуева Надежда Style Change Detection paper

slides video

Рита Кузнецова Игашов Илья, review BHMF AIL-S-B-R- [AILSBRCV0TE0D0WS] 3+10
Игашов Илья Формулировка and решение задачи оптимизации, сочетающей классификацию and регрессию, для оценки энергии связывания белка and маленьких молекул. paper

slides video

Sergei Grudinin, Maria Kadukova Манучарян Вардан, review, correction BHMF AILBS+BRHC>V> [AILSBRCVTE0D0WS] 3+11
Калугин Дмитрий Предсказание графовой структуры нейросетевой модели paper

slides

Бахтеев Олег Зуева Надежда review BHM AI-L-S--B0R0C0V0 [A-ILSBR0CVT0ED0WS] 2+11
Манучарян Вардан Предсказание свойств and типов атомов в молекулярных графах при помощи сверточных сетей paper,

slides, code video

Sergei Grudinin, Maria Kadukova Фаттахов Артур review BMF AILS>B> [AILSB0R0CV0TE0D0WS] VED 3+7
Муравьев Кирилл Определение параметров нейросети, подлежащих оптимизации. paper,

slides, code video

Бахтеев Олег Калугин Дмитрий review BHMF A+IL-S-B-RCVTED [AILSBRCV0TE0DWS] 3+12
Мурзин Дмитрий Данилов Андрей Распознавание текста на основе скелетного представления толстых линий and свёрточных сетей paper, slides, code

[video]

Л. М. Местецкий, Иван Рейер, Жариков И. Н. Муравьев Кирилл review BHMF A+IL> [AILSB0R0CV0TE0D0WS] 3+8
Поповкин Андрей Романенко Илья Создание ранжирующих моделей для систем информационного поиска. Алгоритм прогнозирования структуры локально-оптимальных моделей paper

slides code video

Кулунчаков Андрей, Strizhov V.V. Проскурин Александр, Белых Евгений, review BHMF AILS0BC>V> [AILSBRC0VTED0WS] 3+11
Фаттахов Артур Style Change Detection paper

slides code video

Рита Кузнецова Данилов Андрей, Мурзин Дмитрий, review BMF AIL-S-B-R-CVTDSWH [AILSBRCVTE0D0WS] 3+11


Task 1 (1-2)

  • Name: Классификация суперпозиций движений физической активности
  • Task: Анализ поведения человека по измерениям датчиков мобильного телефона: по данным акселерометра определить движения человека. Данные акселерометра представляют собой сигнал, не имеющий точной периодики, который содержит неизвестную суперпозицию физических моделей. Будем рассматривать суперпозицию моделей: тело + рука/сумка/рюкзак.

Классификация видов деятельности человека по измерениям фитнес-браслетов. По измерениям акселерометра and гироскопа требуется определить вид деятельности рабочего. Предполагается, что временные ряды измерений содержат элементарные движения, которые образуют кластеры в пространстве описаний временных рядов. (Развитие: Характерная продолжительность движения — секунды. Временные ряды размечены метками вида деятельности: работа, отдых. Характерная продолжительность деятельности — минуты. Требуется по описанию временного ряда and кластера восстановить вид деятельности.)

  • Data:
  • References::
    • Карасиков М. Е., Стрижов В. В. Классификация временных рядов в пространстве параметров порождающих моделей // Информатика and ее применения, 2016. [URL]
    • Кузнецов М. П., Ивкин Н. П. Алгоритм классификации временных рядов акселерометра по комбинированному признаковому описанию // Машинное обучение and анализ данных. 2015. T. 1, № 11. C. 1471—1483. [URL]
    • Исаченко Р. В., Стрижов В. В. Метрическое обучение в Taskх многоклассовой классификации временных рядов // Информатика and ее применения, 2016, 10(2) : 48-57. [URL]
    • Задаянчук А. И., Попова М. С., Стрижов В. В. Выбор оптимальной модели классификации физической активности по измерениям акселерометра // Информационные технологии, 2016. [URL]
    • Motrenko A.P., Strijov V.V. Extracting fundamental periods to segment human motion time series // Journal of Biomedical and Health Informatics, 2016, Vol. 20, No. 6, 1466—1476. [URL]
    • Ignatov A., Strijov V. Human activity recognition using quasiperiodic time series collected from a single triaxial accelerometer // Multimedia Tools and Applications, 2015, 17.05.2015 : 1-14. [URL]
  • Basic algorithm: Basic algorithm описан в работах [Карасиков, Стрижов: 2016] and [Кузнецов, Ивкин: 2014].
  • Solution: Найти оптимальный способ сегментации and оптимальное описание временного ряда. Построить метрическое пространство описаний элементарных движений.
  • Novelty: Предложен способ классификации and анализа сложных движений (Развитие: Соединение двух характеристических времен описания жизни человека, комбинированная постановка задачи.)
  • Authors: Александра Малькова, Мария Владимирова, R. G. Neichev, Strizhov V.V.,

Task 2 (1)

  • Name: Сравнение нейросетевых and непрерывно-морфологических методов в задаче детекции текста (Text Detection).
  • Task: Automatically Detect Text in Natural Images.
  • Data: синтетические сгенерированные данные + подготовленная выборка фотографий + COCO-Text dataset + Конкурс Avito 2014.
  • References:: COCO benchmark, One of a state-of-the-art architecture
  • Basic algorithm: code + морфологические методы, Avito 2014 winner’s solution.
  • Solution: Предлагается сравнить работы нескольких state-of-the-art алгоритмов, которым нужна обширная обучающая выборка, с морфологическими методы, требующие небольшого числа данных. Предлагается определить границы применимости тех или иных методов.
  • Novelty: предложить алгоритм, основанный на использовании как нейросетевых, так and морфологических методов (решение задачи word detection).
  • Authors: И. Н. Жариков.
  • Expert: Л. М. Местецкий (морфологические методы).

Task 3 (1-2)

  • Name: Распознавание текста на основе скелетного представления толстых линий and сверточных сетей
  • Task: Требуется построить две CNN, одна распознает растровое представление изображения, другая векторное. (Развитие: порождение толстых линий нейросетями)
  • Data: Шрифты в растровом представлении.
  • References:: Список работ [74], в частности arXiv:1611.03199 и
  • Basic algorithm: Сверточная сеть для растрового изображения.
  • Solution: Требуется предложить способ свертывания графовых структур, позволяющий породить информативное описание скелета толстой линии.
  • Novelty: Предложен способ повышения качества распознавания толстых линий за счет нового способа порождения их описаний.
  • Authors: Л. М. Местецкий, И. А. Рейер, Strizhov V.V.

Task 4 (1-2)

  • Name: Создание ранжирующих моделей для систем информационного поиска. Алгоритм прогнозирования структуры локально-оптимальных моделей
  • Task: Требуется спрогнозировать временной ряд с помощью некоторой параметрической суперпозицией алгебраических функций. Предлагается не стоить прогностическую модель, а спрогнозировать ее, то есть предсказать структуру аппроксимирующей суперпозиции. Вводится класс рассматриваемых суперпозиций, and на множестве таких структурных описаний проводится поиск локально-оптимальной модели для рассматриваемой задачи. Task состоит в 1) поиске подходящего структурного описания модели 2) описания алгоритма поиска той структуры, которая будет соответствовать оптимальной модели 3) описания алгоритма обратного построения модели по ее структурному описанию. В качестве уже имеющегося примера ответа на вопросы 1-3, смотри работы А. А. Варфоломеевой.
  • Data:
    • Коллекция текстовых документов TREC (!)
    • Набор временных рядов, который подразумевает восстановление функциональных зависимостей. Предлагается сначала использовать синтетические данные или сразу применить алгоритм к прогнозированию временных рядов 1) потребления электроэнергии 2) физической активности с последующим анализом получающихся структур.
  • References::
    • (!) Kulunchakov A.S., Strijov V.V. Generation of simple structured Information Retrieval functions by genetic algorithm without stagnation // Expert Systems with Applications, 2017, 85 : 221—230.
    • А. А. Варфоломеева Выбор признаков при разметке библиографических списков методами структурного обучения, 2013, [75]
    • Bin Cao, Ying Li and Jianwei Yin Measuring Similarity between Graphs Based on the Levenshtein Distance, 2012, [76]
  • Basic algorithm: Конкретно к предлагаемой проблеме базового алгоритма нет. Предлагается попробовать повторить эксперимент А. А. Варфоломеевой для другого структурного описания, чтобы понять, что происходит.
  • Solution: Суперпозиция алгебраических функций задает ордерево, на вершинах которого заданы метки соответствующих алгебраических функций или переменных. Поэтому структурным описанием такой суперпозиции может являться ее DFS-code. Это строка, состоящая из меток вершин, записанных в порядке обхода дерева поиском в глубину. Зная арности соответствующих алгебраических функций, можем любой такой DFS-code восстановить за O(n) and получить обратно суперпозицию функций. На множестве подобных строковых описаний предлагается искать то строковое описание, которое будет соответствовать оптимальной модели.
  • Authors: Кулунчаков Андрей, Strizhov V.V.

Task 5 (1)

  • Name: Определение параметров нейросети, подлежащих оптимизации.
  • Task: Рассматривается Task оптимизации нейросети. Требуется разделить параметры модели на две группы:
    • а) Параметры модели, подлежащие оптимизации
    • б) Параметры модели, оптимизация которых завершилась. Дальнейшая оптимизация данных параметров не даст улучшения качества модели.

Предлагается рассматривать оптимизацию параметров как стохастический процесс. Основываясь на истории процесса найдем те параметры, чья оптимизация больше не требуется.

  • Data: Выборка рукописных цифр MNIST
  • Basic algorithm: Случайный выбор параметров.
  • References::
    • [77] SGD как стохастический процесс.
    • [78] Вариационный вывод в нейросетях.
  • Novelty: полученный алгоритм позволит существенно снизить вычислительную стоимость оптимизации нейросетей. Возможным дальнейшим развитием метода является получение оценок на параметры сети, полученной из исходной операциями расширения, сжатия, добавления and удаления слоев.
  • Authors: Бахтеев Олег, Strizhov V.V.

Task 6 (1)

  • Name: Предсказание графовой структуры нейросетевой модели.
  • Task: Рассматривается Task нахождения устойчивой (и не избыточной по параметрам) структуры сверточной нейросети. Предлагается предсказывать структуру нейросети с использованием doubly-recurrent нейросетей. В качестве обучающей выборки предлагается использовать структуры моделей, показавших хорошее качество на подвыборках небольшой мощности.
  • Data: Выборки MNIST, CIFAR-10
  • Basic algorithm: случайный поиск. Возможно сравнение с работами по обучению с подкреплением.
  • References::
    • [79] doubly-recurrent нейросети.
    • [80] Схожий подход с использованием обучения с подкреплением.
  • Authors: Бахтеев Олег, Strizhov V.V.

Task 7 (1)

PAN 2017 (http://pan.webis.de/clef17/pan17-web/author-identification.html) PAN 2016 (http://pan.webis.de/clef16/pan16-web/author-identification.html)

  • References::

1. Ian Goodfellow. NIPS 2016 Tutorial: Generative Adversarial Networks (https://arxiv.org/pdf/1701.06547.pdf) 2. Jiwei Li, Will Monroe, Tianlin Shi, Sebastien Jean, Alan Ritter and Dan Jurafsky. Adversarial Learning for Neural Dialogue Generation(https://arxiv.org/pdf/1701.06547.pdf) 3. M. Kuznetsov, A. Motrenko, R. Kuznetsova, V. Strijov. Methods for Intrinsic Plagiarism Detection and Author Diarization (https://pdfs.semanticscholar.org/1011/6d82a8438c78877a8a142be47c4ee8662138.pdf) 4. K. Safin, R. Kuznetsova. Style Breach Detection with Neural Sentence Embeddings (https://pdfs.semanticscholar.org/c70e/7f8fbc561520accda7eea2f9bbf254edb255.pdf)

  • Basic algorithm: решение, описанное в [3, 4].
  • Solution: предлагается решать задачу, используя generative adversarial networks — генеративная модель порождает тексты в одном авторском стиле, дискриминативная модель — бинарный классификатор.
  • Novelty: предполагается, что решение этой задачи предлагаемым методом может дать прирост качества по сравнению с типичными методами решениями этой задачи, а также связанных с ней задач кластеризации авторов.
  • Authors: Рита Кузнецова (consultant), Strizhov V.V.

Task 8 (1)

  • Name: Получение оценок правдоподобия с использованием автокодировщиков
  • Task: предполагается, что рассматриваемые объекты подчиняются гипотезе многообразия (manifold learning) — вектора высокий размерности сосредоточились вокруг некоторого подпространства меньшей размерности. Работы [1, 2] показывают, что некоторые модификации автокодировщиков ищут k-мерное многообразие в пространстве объектов, которое наиболее полно передает структуру данных. В работе [2] выводится оценка плотности вероятности данных с помощью автокодировщика. Требуется получить эту оценку на правдоподобие модели.
  • Data: предлагается провести эксперимент на коротких текстовых фрагментах Google ngrams (http://storage.googleapis.com/books/ngrams/books/datasetsv2.html)
  • References::
    1. Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, Pierre-Antoine Manzagol. Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion (http://www.jmlr.org/papers/volume11/vincent10a/vincent10a.pdf).
    2. Guillaume Alain, Yoshua Bengio. What Regularized Auto-Encoders Learn from the Data Generating Distribution (https://arxiv.org/pdf/1211.4246.pdf)
    3. Hanna Kamyshanska, Roland Memisevic. The Potential Energy of an Autoencoder (https://www.iro.umontreal.ca/~memisevr/pubs/AEenergy.pdf)
  • Basic algorithm:
  • Solution: в задаче предлагается обучить векторные представления для фраз (n-грамм) с использованием автокодировщика, с помощью теоремы 2 в работе [2] получить оценку на правдоподобие выборки и, с помощью этой оценки, вывести правдоподобие модели. С помощью полученных оценок можно также рассмотреть процесс сэмплирования.
  • Novelty: получение оценок правдоподобия данных and правдоподобия модели, порождение текстов с помощью полученных оценок.
  • Authors: Рита Кузнецова (consultant).

Task 9 (1)

  • Name: Предсказание свойств and типов атомов в молекулярных графах при помощи сверточных сетей.
  • Task: Multilabel classification using convolutional neural networks (CNN) on graphs.

Для предсказания взаимодействия молекул друг с другом зачастую необходимо правильно описать составляющие их атомы, поставив им в соответствие некоторые типы. Для маленьких молекул доступно не так много дескрипторов: координаты and химические элементы атомов, длины связей and величины углов между ними. Используя эти признаки, мы успешно предсказываем гибридизации атомов and типы связей. При таком подходе каждый атом рассматривается «по отдельности», информация о соседних атомах, необходимая для определения типа атома, практически не используется, and типы атомов определяются с помощью проверки большого числа условий. В то же время, молекулы представимы в виде трехмерных молекулярных графов, and было бы интересно использовать это для предсказания их типов методами машинного обучения, например, с помощью CNN. Необходимо предсказать типы вершин and рёбер молекулярных графов :

    • тип атома (тип вершины графа, около 150 классов),
    • гибридизацию атома (вспомогательный признак, тип вершины, 4 класса),
    • тип связи (вспомогательный признак, тип ребра, 5 классов).

Тип атома (вершины графа) основан на информации о его гибридизации and свойствах соседних с ним атомов. Поэтому в случае успешного решения задачи классификации можно провести кластеризацию для поиска других способов определения типов атомов.

  • Data: Около 15 тысяч молекул, представленных в виде молекулярных графов. Для каждой вершины (атома) известны 3D координаты and химический элемент. Дополнительно посчитаны длины связей, величины углов and двугранных углов между атомами (3D координаты графа), бинарные признаки, отражающие, входит ли атом в цикл and является ли он терминальным. Выборка размечена, однако в размеченных данных может содержаться ~5 % ошибок.

Если данных будет недостаточно, возможно увеличение выборки (до 200 тысяч молекул), сопряженное с увеличением неточности в разметке.

  • References::
  • Basic algorithm: Предсказание гибридизаций and порядков связей с помощью мультиклассового нелинейного SVM с небольшим числом дескрипторов. https://hal.inria.fr/hal-01381010/document
  • Solution: Предлагаемое решение задачи and способы проведения исследования.

Способы представления and визуализации данных and проведения анализа ошибок, анализа качества алгоритма. На первом этапе нужно будет определить операции на графах, необходимые для построения архитектуры сети. Далее нужно будет обучить сеть для мульти-классовой классификации типов вершин (и ребер) входного графа. Для оценки качества алгоритма предполагается оценивать точность с помощью кросс-валидации. Для конечной публикации (в профильном журнале) нужно будет сделать специфический тест на качество предсказаний: на основе предсказанных типов связи молекула записывается в виде строки (в формате SMILES) and сравнивается с образцом. В этом случае для каждой молекулы предсказание будет считаться верным, только если типы всех связей в ней были предсказаны без ошибок.

  • Novelty: Предложенные молекулярные графы обладают 3D структурой and внутренней иерархией, что делает их идеальным объектом применения CNN.
  • Authors: Sergei Grudinin, Maria Kadukova, Strizhov V.V..

Task 10 (1)

  • Name: Формулировка and решение задачи оптимизации, сочетающей классификацию and регрессию, для оценки энергии связывания белка and маленьких молекул. Описание задачи [84]
  • Task:

С точки зрения биоинформатики, Task заключается в оценке свободной энергии связывания белка с маленькой молекулой (лигандом): наилучший лиганд в своем наилучшем положении имеет \textbf{наименьшую свободную энергию} взаимодействия с белком. (Далее большой текст, см. файл по ссылке вверху.)

  • Data:
    • Данные для бинарной классификации.

Около 12,000 комплексов белков с лигандами: для каждого из них есть 1 нативная поза and 18 ненативных. Основными дескрипторами являются гистограммы распределений расстояний между различными атомами белка and лиганда, размерность вектора дескрипторов ~ 20,000. В случае продолжения исследования and публикации в профильном журнале набор дескрипторов может быть расширен. Данные будут предоставлены в виде бинарных файлов со скриптом на python для чтения.

    • Данные для регрессии.

Для каждого из представленных комплексов известно значение величины, которую можно интерпретировать как энергию связывания.

  • References::
  • Basic algorithm: [88]

В задаче классификации мы использовали алгоритм, похожий на линейный SVM, связь которого с оценкой энергии, выходящей за рамки задачи классификации, описана в указанной выше статье. В задаче регрессии можно использовать различные функции потерь.

  • Solution: Необходимо связать использованную ранее оптимизационную задачу с задачей регрессии and решить стандартными методами. Для проверки работы алгоритма будет использована кросс-валидация.

Есть отдельный тестовый сет, состоящий из (1) 195 комплексов белков and лигандов, для которых нужно найти наилучшую позу лиганда (алгоритм получения положений лиганда отличается от используемого при обучении), (2) комплексов белков and лигандов, для нативных поз которых нужно предсказать энергию связывания, and (3) 65 белков, для которых нужно найти наиболее сильно связывающийся лиганд.

  • Novelty:' В первую очередь, интерес представляет объединение задач классификации and регрессии.

Правильная оценка качества связывания белка and лиганда используется при разработке лекарства для поиска молекул, наиболее сильно взаимодействующих с исследуемым белком. Использование описанной выше задачи классификации для предсказания энергии связывания приводит к недостаточно высокой корреляции предсказаний с экспериментальными значениями, в то время как использование одной лишь задачи регрессии приводит к переобучению.

  • Авторы Sergei Grudinin, Maria Kadukova, Strizhov V.V..

2017

Author Topic Link Consultant Reviewer Report Letters
Гончаров Алексей (пример) Метрическая классификация временных рядов code,

paper, slides

Maria Popova Задаянчук Андрей BMF AILSBRCVTDSWH>
Алексеев Василий Внутритекстовая когерентность как мера интерпретируемости тематических моделей текстовых коллекций code

data paper slides video

Viktor Bulatov Захаренков Антон BMF AILSB+RC+V+TDHW
Аникеев Дмитрий Локальная аппроксимация временных рядов для построения прогностических метамоделей code

paper slides

Strizhov V.V. Смердов Антон BMF AILS>B0R0C0V0T0D0H0W0
Гасанов Эльнур Построение аппроксимирующего описания скалограммы в задаче прогнозирования движений по электрокортикограмме code paper

slides

Anastasia Motrenko Ковалев Дмитрий BMF AILSBRCVTDH0W0
Захаренков Антон Massively multitask deep learning for drug discovery code

paper slides video

Maria Popova Алексеев Василий BMF AILSBRCVT>D>H0W0
Ковалев Дмитрий Unsupervised representation for molecules code

paper slides

Maria Popova Гасанов Эльнур BMF AILSBRCVT>D>H0W0
Новицкий Василий Выбор признаков в Taskх авторегрессионного прогнозирования биомедицинских сигналов paper

code slides

Александр Катруца B - F AILS>B0R0C0V0T0D0H0W0
Селезнева Мария Агрегирование гетерогенных текстовых коллекций в иерархической тематической модели русскоязычного научно-популярного контента paper

code slides video

Ирина Ефимова Шолохов Алексей BMF A+IL+SBRCVTDHW
Смердов Антон Выбор оптимальной модели рекуррентной сети в Taskх поиска парафраза paper

code slides video

Oleg Bakhteev Дмитрий Аникеев BMF AIL+SB+RC>V+M-T>D0H0W0
Уваров Никита Оптимальный алгоритм для восстановления динамических моделей paper

slides code video

Yuri Maksimov BMF AILS0B0R0C0V0T0D0H0W0
Усманова Карина Multiple Manifold Learning (Joint diagonalization for 3D shapes - AJD on Hessian matrices) paper

slides code video

Михаил Карасиков Иннокентий Шибаев BMF AILSBRC+VT+EDH>W
Шибаев Иннокентий Convex relaxations for multiple structure alignment (synchronization problem for SO(3)) paper

slides code video

Михаил Карасиков Карина Усманова BMF AILS-BRCVT>D>H>W
Шолохов Алексей Помехоустойчивость методов информационного анализа ЭКГ-сигналов

paper code slides video

Влада Бунакова Селезнева Мария BMF AILSBRCVTDHW


Академ или новые

Author Topic Link Consultant Reviewer Report Letters
Кульков Александр Адаптивные релаксации NP трудных задач через машинное обучение paper Yuri Maksimov академ A>I>L>B0R0C0V0T0D0H0W0
Калошин Павел Применение сетей глубокого обучения для переноса моделей классификации в случае недостаточного объема данных.

paper code data

Anton Khritankov - MF AIL-SBRC-VT+D>H>W0
Малиновский Григорий Выбор интерпретируемых мультимоделей в Taskх кредитного скоринга paper

code

Alexander Aduenko академ B - - AILS-B>R>C>V>T0D0H0W0
Плетнев Никита Детектирование внутреннего плагиата paper Рита Кузнецова академ - - - A-I-L-S>B0R0C0V0T0D0H0W0
Гревцев Александр Параллельные алгоритмы параметрической идентификации потенциала Терсоффа для AlN

paper

Каринэ Абгарян
Зайцев Никита Автоматическая классификация научных статей по кристаллографии

paper readme

Евгений Гаврилов
Дилигул Александр Определение оптимальных параметров потенциала для модели Rosato-Guillope-Legrand (RGL) по экспериментальным данным and результатам квантово-механических расчетов

paper

Каринэ Абгарян
Дарья Фокина Отбор кандидатов в задаче поиска текстовых заимствований с перефразированием, основанный на векторизации текстовых фрагментов Алексей Романов AILSB0R0C0V0T0D0H0W0

Task 1

  • Name: Классификация видов деятельности человека по измерениям фитнес-браслетов.
  • Task: По измерениям акселерометра and гироскопа требуется определить вид деятельности рабочего. Предполагается, что временные ряды измерений содержат элементарные движения, которые образуют кластеры в пространстве описаний временных рядов. Характерная продолжительность движения – секунды. Временные ряды размечены метками вида деятельности: работа, отдых. Характерная продолжительность деятельности – минуты. Требуется по описанию временного ряда and кластера восстановить вид деятельности.
  • Data: Временные ряды акселерометра WISDM (Временной ряд (библиотека примеров), раздел Accelerometry).
  • References::
    • Карасиков М.Е., Strizhov V.V. Классификация временных рядов в пространстве параметров порождающих моделей // Информатика and ее применения, 2016. [URL]
    • Kuznetsov M.P., Ivkin N.P. Алгоритм классификации временных рядов акселерометра по комбинированному признаковому описанию // Машинное обучение and анализ данных. 2015. T. 1, № 11. C. 1471 - 1483. [URL]
    • Isachenko R.V., Strizhov V.V. Метрическое обучение в Taskх многоклассовой классификации временных рядов // Информатика and ее применения, 2016, 10(2) : 48-57. [URL]
    • Zadayanchuk A.I., Popova M.S., Strizhov V.V. Выбор оптимальной модели классификации физической активности по измерениям акселерометра // Информационные технологии, 2016. [URL]
    • Motrenko A.P., Strijov V.V. Extracting fundamental periods to segment human motion time series // Journal of Biomedical and Health Informatics, 2016, Vol. 20, No. 6, 1466 - 1476. [URL]
    • Ignatov A., Strijov V. Human activity recognition using quasiperiodic time series collected from a single triaxial accelerometer // Multimedia Tools and Applications, 2015, 17.05.2015 : 1-14. [URL]
  • Basic algorithm: Basic algorithm описан в работах [Карасиков, Стрижов: 2016] and [Кузнецов, Ивкин: 2014].
  • Solution: Найти оптимальный способ сегментации and оптимальное описание временного ряда. Построить метрическое пространство описаний элементарных движений.
  • Novelty:: Соединение двух характеристических времен описания жизни человека, комбинированная постановка задачи.
  • Authors: Strizhov V.V., М.П. Кузнецов, П.В. Левдик.

Task 2

  • Name: Построение аппроксимирующего описания скалограммы в задаче прогнозирования движений по электрокортикограмме.
  • Task: В рамках решения задачи декодирования сигналов ECoG решается Task классификации движений по временным рядам показаний электродов. Инструментами для извлечения признаков из временных рядов ECoG являются коэффициенты вейвлет-преобразования исследуемого сигнала [Макарчук 2016], на основе которых для каждого электрода строится скалограмма - двумерный массив признаков в пространстве частота-время. Объединение скалограмм для каждого электрода даёт признаки временного ряда в пространственно-частотно-временной области. Построенное таким образом признаковое описание заведомо содержит мультикоррелирующие признаки and является избыточным. Требуется предложить метод снижения размерности признакового пространства.
  • Data: Измерения положений пальцев при совершении простых жестов. Описание экспериментов данные.
  • References::
    • Макарчук Г.И., Zadayanchuk A.I. Strizhov V.V. 2016. Использование метода частичных наименьших квадратов для декодирования движения руки с помощью ECoG сигналов у обезьян. pdf
    • Карасиков М.Е., Strizhov V.V. Классификация временных рядов в пространстве параметров порождающих моделей // Информатика and ее применения, 2016. [URL]
    • Kuznetsov M.P., Ivkin N.P. Алгоритм классификации временных рядов акселерометра по комбинированному признаковому описанию // Машинное обучение and анализ данных. 2015. T. 1, № 11. C. 1471 - 1483.
  • Basic algorithm: PLS

Chen C, Shin D, Watanabe H, Nakanishi Y, Kambara H, et al. (2013) Prediction of Hand Trajectory from Electrocorticography Signals in Primary Motor Cortex. PLoS ONE 8(12): e83534.

  • Solution: Для снижения размерности предлагается использовать метод локальной аппроксимации, предложенный в [Кузнецов 2015] использованный для классификации акселерометрических временных рядов [Карасиков 2016].
  • Novelty: Предложен новый метод восстановления движений на основе электрокортикограмм.
  • Authors: Strizhov V.V., А.П. Мотренко

Task 3

  • Name: Multiple Manifold Learning (Joint diagonalization for 3D shapes - AJD on Hessian matrices).
  • Task: Построение оптимального алгоритма для задачи Multiple Manifold Learning. Даны две конформации белка (две третичные труктуры). В окрестности каждого состояния задана модель эластичного тела (колебания структуры в окрестности данных состояний). Task состоит в построении общей модели эластичного тела для нахождения промежуточных состояний с максимальным совпадением с данными моделями в окрестностях заданных конформаций. Пространство движений эластичного тела задается собственными векторами гессиана. Требуется найти общее low-rank приближение пространства движений двух эластичных тел.
  • Data: Белковые структуры в двойных конформациях из PDB, около 100 наборов из статьи https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4677049/
  • References:: Список научных работ, дополненный 1) формулировкой решаемой задачи, 2) ссылками на новые результаты (недавняя статья, близкая по результатам), 3) основной информацией об исследуемой проблеме.

Tirion, M. M. (1996). Large amplitude elastic motions in proteins from a single-parameter, atomic analysis. Physical Review Letters, 77(9), 1905. Moal, I. H., & Bates, P. A. (2010). {SwarmDock} and the Use of Normal Modes in Protein-Protein Docking. IJMS, 11(10), 3623–3648. https://doi.org/10.3390/ijms11103623

  • Basic algorithm: AJD algorithm: http://perso.telecom-paristech.fr/~cardoso/jointdiag.html, AJD algorithms implemented as part of Shogun ML toolbox http://shogun-toolbox.org, http://shogun-toolbox.org/api/latest/classshogun_1_1CApproxJointDiagonalizer.html.
  • Solution: Вычисление гессианов (C++ код у Сергея), изучение and запуск стандартных алгоритмов совместной диагонализации для первых n нетривиальных собственных векторов, анализ функций потерь, адаптирование стандартного алгоритма для решения исходной задачи.
  • Novelty: При помощи простых моделей теории эластичности с одним или несколькими свободными параметрами можно описать тепловые флуктуации в белках. Однако такие модели не описывают переходы между несколькими стабильными конформациями в белках. Целью данной работы является доработка эластичной модели так, чтобы она также описывала пространство конформационных изменений.
  • Authors: Грудинин Сергей, consultant: Карасиков Михаил / Максимов Юрий.

Task 4

  • Name: Convex relaxations for multiple structure alignment (synchronization problem for SO(3)).
  • Task: Найти преобразования для одновременного выравнивания третичных структур белков (простыми словами: найти ортогональные преобразования, совмещающие данные в R^3 молекулы, имеющие одинаковые химические формулы). Если структуры одинаковые (RMSD после выравнивания равно нулю, структуры совмещаются точно), то выравнивать можно попарно. Однако, если это не так, то Basic algorithm, вообще говоря, не находит оптимум исходной задачи с функцией потерь для одновременного выравнивания.
  • Data: Структуры белков в PDB формате в различных состояниях and системах координат.
  • References::
    • Multiple structural alignment:
      1. Kearsley.S.K. (1990)7. Comput. Chem., 11, 1187-1192.
      2. Shapiro., BothaJ.D., PastorA and Lesk.A.M. (1992) Acta Crystallogr., A48, 11-14.
      3. Diamond,R. (1992) Protein Sci., 1, 1279-1287.
      4. May AC, Johnson MS, Improved genetic algorithm-based protein structure comparisons: pairwise and multiple superpositions. Protein Eng. 1995 Sep;8(9):873-82.
    • Synchronisation problem:
      1. O. Özyeşil, N. Sharon, A. Singer, ``Synchronization over Cartan motion groups via contraction”, Available at arXiv.
      2. L. Wang, A. Singer, ``Exact and Stable Recovery of Rotations for Robust Synchronization”, Information and Inference: A Journal of the IMA, 2(2), pp. 145--193 (2013).
      3. Semidefinite relaxations for optimization problems over rotation matrices J Saunderson, PA Parrilo… - Decision and Control ( …, 2014 - ieeexplore.ieee.org
      4. Spectral synchronization of multiple views in SE (3) F Arrigoni, B Rossi, A Fusiello - SIAM Journal on Imaging Sciences, 2016 - SIAM
      5. Robust Rotation Synchronization via Low-rank and Sparse Matrix Decomposition, F Arrigoni, A Fusiello, B Rossi, P Fragneto - arXiv preprint arXiv: …, 2015 - arxiv.org
    • Spectral relaxation for SO(2)
      1. A. Singer, Angular synchronization by eigenvectors and semidefinite programming, Applied and Computational Harmonic Analysis 30 (1) (2011) 20 – 36.
    • Spectral relaxation for SO(3)
      1. M.Arie-Nachimson,S.Z.Kovalsky,I.Kemelmacher-Shlizerman,A.Singer,R.Basri,Global motion estimation from point matches, in: International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission, 2012, pp. 81–88.
      2. A. Singer, Y. Shkolnisky, Three-dimensional structure determination from common lines in cryo-em by eigenvectors and semidefinite programming, SIAM Journal on Imaging Sciences 4 (2) (2011) 543– 572.
  • Basic algorithm: Алгоритм локального (попарного) выравнивания. Kearsley.S.K. (1989) Acta Crystallogr., A45, 208-210 ; Rapid determination of RMSDs corresponding to macromolecular rigid body motions

Petr Popov, Sergei Grudinin, Journal of Computational Chemistry, Wiley, 2014, 35 (12), pp.950-956. <10.1002/jcc.23569> DOI : 10.1002/jcc.23569

  • Solution: Два варианта постановки оптимизационных задач (через матрицы поворота and через кватернионы). Релаксация полученных задач выпуклыми, сравнение решений задачи базовым алгоритмом and релаксациями (spectral relaxation, SDP).
  • Novelty: Метод, выравнивающий структуры, минимизируя функцию потерь, учитывающую все попарные потери.
  • Authors: Грудинин Сергей, consultant: Карасиков Михаил.

Task 5

  • Name: Локальная аппроксимация временных рядов для построения прогностических метамоделей.
  • Task: Исследуется физическая активность человека по временным рядам - измерениям акселерометра. Целью проекта является создание инструмента для анализа проблемы созания моделей прогнозирования моделей - метамоделей. Исследуется сегмент временного ряда. Требуется спрогнозировать класс сегмента. (Вариант: спрогнозировать окончание сегмента, последующий сегмент, его класс. При этом класс последующего сегмента может отличаться от класса предыдущего).
  • Data: Взять за основу выборку Santa Fe или WISDM (выборки состоят из сегментов со многими элементарными движениями and соответствующими сегментам метками классов), вариант OPPORTUNITY Activity Recognition Challenge.
  • References::
    • Карасиков М.Е., Strizhov V.V. Классификация временных рядов в пространстве параметров порождающих моделей // Информатика and ее применения, 2016. [URL]
    • Kuznetsov M.P., Ivkin N.P. Алгоритм классификации временных рядов акселерометра по комбинированному признаковому описанию // Машинное обучение and анализ данных. 2015. T. 1, № 11. C. 1471 - 1483. [URL]
  • Basic algorithm: [Карасиков 2016]
  • Solution: См. описание задачи.
  • Novelty: При создании метапрогностических моделей (моделей прогнозирования прогностических моделей) остается открытой проблема использования значений параметров локальных моделей при создании метамоделей. Цель нижеприведенного проекта - создание инструмента для анализа этой проблемы.
  • Authors: Strizhov V.V.

Task 6

  • Name: Выбор оптимальной модели рекуррентной сети в Taskх поиска парафраза
  • Task: Задана выборка пар предложений с метками <<похожие>> and <<непохожие>>. Требуется построить рекуррентную сеть небольшой сложности (т.е. с небольшим количеством параметров), доставляющую минимум ошибке классификации пар предложений.
  • Data: Предлагается рассмотреть две выборки: Microsoft Paraphrase Corpus (небольшой набор предложений) and PPDB (набор коротких сегментов, не всегда корректная разметка)
  • References::
    • [1] Пошаговое описание реализации рекуррентной сети LSTM
    • [2] Алгоритм прореживания, основанный на построении сети, обладающей минимальной длиной описания
    • [3] Optimal Brain Damage
  • Basic algorithm: В качестве базового алгоритма могут выступать:
    1. Решение без прореживания
    2. Решение, описанное в [3]
    3. Otimal Brain Damage
  • Solution: Предлагается рассмотреть метод прореживания, описанный в [3] с блочной матрицей ковариаций: в качестве блоков выступают либо нейроны, либо параметры с группировкой по входным признакам.
  • Novelty: Предложенный метод позволит эффективно снижать сложность рекуррентной сети с учетом взаимосвязи между нейронами или входными признаками.
  • Authors: Oleg Bakhteev, consultant

Task 7

  • Name: Детектирование внутреннего плагиата
  • Task: Решается Task выявления внутренних заимствований в тексте. Требуется проверить гипотезу о том, что заданный текст написан единственным автором, and в случае ее невыполнения выделить заимствованные части текста. Заимствованием считается часть текста, предположительно написанная другим автором and содержащая характерные отличия от стиля основного автора. Требуется разработать такую стилевую функцию, которая позволяет с высокой степенью достоверности отличить стиль основного автора текста от заимствований.
  • Data: Предлагается рассмотреть корпус PAN-2011, PAN-2016
  • References::
    • [1] Пошаговое описание реализации рекуррентной сети LSTM
    • [2] Алгоритм кластеризации авторов
    • [3] Statistical Language Models Based on Neural Networks
    • [4] Methods for intrinsic plagiarism detection and author diarization
  • Basic algorithm: В качестве базового алгоритма может выступать решение, описанное в [4].
  • Solution: Предлагается рассмотреть метод, описанный в [2] and строить стилевую функцию, основываясь на выходах нейронной сети.
  • Novelty: Предполагается, что построение стилевой функции предлагаемым методом может дать прирост качества по сравнению с типичными решениями этой задачи.
  • Authors: Рита Кузнецова, consultant

Task 8

  • Name: Адаптивные релаксации NP трудных задач через машинное обучение
  • Task: Современные задачи оптимизации потоков мощности в энергетических сетях приводят к невыпуклым Taskм оптимизации с большим количеством ограничений. Аналогичные по структуре постановки возникают также в ряде других инженерных задач and в классических Taskх комбинаторной оптимизации. Традиционный подход к решению подобных NP трудных задач состоит в написании их выпуклых релаксаций (semidefinite/SDP, second order conic/SOCP, etc), имеющих как правило существенно большее множество допустимых решений, чем в исходной задаче. and последующей проекцией полученного решения в область, где выполнены ограничения исходной задачи. Во многих практических случаях, качество полученного таким образом решения невелико. Альтернативные подходы, например MILP (mixed integer linear programming) релаксации, существенно более трудоемки по времени, но приводят к более точно у ответу.

Основная проблема состоит в невозможности применения известных методов для решения задач большой размерности (сети из 1000 узлов and более). Одним из ключевых препятствий является не столько размерность задачи, сколько большое число ограничений. Вместе с тем, в реальных Taskх можно выделить небольшое множество ограничений такое, что множества допустимых точек в выделенном множестве and в исходном весьма близки. Это позволит заменить задачу на иную, с меньшим числом ограничений, что повысит скорость используемых алгоритмов. Предлагается использовать методы машинного обучения для построения указанного множества наиболее важных ограничений.

  • References:: Методы семплинга/машинного обучения:
    1. Beygelzimer, A., Dasgupta, S., & Langford, J. (2009, June). Importance weighted active learning. In Proceedings of the 26th annual international conference on machine learning (pp. 49-56). ACM.
    2. Tong, S., & Koller, D. (2001). Support vector machine active learning with applications to text classification. Journal of machine learning research, 2(Nov), 45-66.
    3. Owen, A., & Zhou, Y. (2000). Safe and effective importance sampling. Journal of the American Statistical Association, 95(449), 135-143.

Релаксации: Nagarajan, H., Lu, M., Yamangil, E., & Bent, R. (2016). Tightening McCormick Relaxations for Nonlinear Programs via Dynamic Multivariate Partitioning. arXiv preprint arXiv:1606.05806.

  • Data: данные ieee + matpower содержащие описания энергетических сетей and режимов их функционирования.
  • Novelty: указанный подход, по видимому, является первым применением методов прикладной статистики/машинного обучения для решения трудных оптимизационных задач. Мы ожидаем существенный выигрыш в трудоемки стиль методов
  • Автор: consultant: Yuri Maksimov, Expert: Михаил Чертков

Task 9

  • Name: Оптимальный алгоритм для восстановления динамических моделей.
  • Task: Стандартная постановка задач машинного обучения в контексте обучения без учителя (unsupervised learning) предполагает, что примеры (samples) независимы and получены из одного распределения вероятности. Однако зачастую наблюдаемые данные имеют динамическое происхождение and являются коррелироваными. Task состоит в разработке эффективного метода для восстановления динамической графической модели (графа and параметров модели) по наблюдаемым коррелированным динамическим конфигурациям. Эта Task важна с теоретической точки зрения and имеет массу приложений. Основой алгоритма будет служить адаптация нового оптимального метода экранирования взаимодействий (interaction screening), разработанного для модели Изинга. Процесс решения будет сочетать в себе знакомство с теоретическими методами компьютерных наук / машинного обучения and численные эксперименты.
  • Data: Симулированные динамические конфигурации спинов в кинетической модели Изинга.
  • References::
    1. Lokhov et al., "Optimal structure and parameter learning of Ising models", arXiv:1612.05024 (2016) {https://arxiv.org/abs/1612.05024}
    2. Vuffray et al., "Interaction screening: efficient and sample-optimal learning of Ising models", NIPS 2016 {https://arxiv.org/abs/1605.07252}
    3. Decelle and Zhang, "Inference of the sparse kinetic Ising model using the decimation method", Phys. Rev. E 2016 {https://arxiv.org/abs/1502.01660}
    4. Bresler et al., "Learning graphical models from the Glauber dynamics", Allerton 2014 {https://arxiv.org/abs/1410.7659}
    5. Zeng et al., "Maximum likelihood reconstruction for Ising models with asynchronous updates", Phys. Rev. Lett. 2013 {https://arxiv.org/abs/1209.2401}
  • Basic algorithm: Динамический метод экранирования взаимодействий. Сравнение с методом максимального правдоподобия.
  • Novelty: В настоящее время оптимальный (т.е. использующий минимальное возможное количество примеров) алгоритм для данной задачи неизвестен. Динамический метод экранирования взаимодействия имеет хорошие шансы окончательно "закрыть" эту задачу, т.к. является оптимальным для статической задачи.
  • Автор: consultants Андрей Лохов, Yuri Maksimov. Expert Михаил Чертков

Task 10

  • Name: Выбор интерпретируемых мультимоделей в Taskх кредитного скоринга
  • Task: Task кредитного скоринга заключается в определении уровня кредитоспособности заемщика. Для этого используется анкета заемщика, содержащая как числовые (возраст, доход), так and категориальные признаки (пол, профессия). Требуется, имея историческую информацию о возвратах кредитов другими заемщиками, определить, вернет ли заемщик кредит. Данные могут быть разнородными (например, в случае наличия в стране разных регионов по доходу), and для адекватной классификации потребуется несколько моделей. Необходимо определить оптимальное число моделей. По набору параметров моделей необходимо составить портрет заемщика.
  • Data: Предлагается рассмотреть пять выборок из репозиториев UCI and Kaggle, мощностью от 50000 объектов.
  • References:: Диссертация А.А. Адуенко \MLAlgorithms\PhDThesis; С. Bishop, Pattern recognition and machine learning, последняя глава; 20 years of Mixture experts.
  • Basic algorithm: Кластеризация and построение независимых моделей логистической регрессии, Адабуст, Решающий лес (с ограничениями на сложность), Смесь Expertов.
  • Solution: Предлагается алгоритм выбора мультимодели (смеси моделей или смеси Expertов) and определения оптимального числа моделей.
  • Novelty: Предлагается функция расстояния между моделями, в которых распределения параметров заданы на разных носителях.
  • Authors: А.А. Адуенко, Strizhov V.V..

Task 11

  • Name: Выбор признаков в Taskх авторегрессионного прогнозирования биомедицинских сигналов.
  • Task: Решается Task прогнозирования биомедицинских сигналов and сигналов интернета вещей. Требуется спрогнозировать вектор – несколько следующих отсчетов сигнала. Предполагается, что собственную размерность пространства как прогнозируемой переменной, так and независимой переменной можно существенно снизить, увеличив тем самым устойчивость прогноза без существенной потери точности. Для этого используется подход Partial Least Squares в авторегрессионном прогнозировании.
  • Data: Выборка биомедицинских временных рядов SantaFe, выборка сигналов интернета вещей.
  • References:: Katrutsa A.M., Strijov V.V. Stresstest procedure for feature selection algorithms // Chemometrics and Intelligent Laboratory Systems, 2015, 142 : 172-183; : Katrutsa A.M., Strijov V.V. Comprehensive study of feature selection methods to solve multicollinearity problem according to evaluation criteria // Expert Systems with applications, 2017; Kee Siong Ng A Simple Explanation of Partial Least Squares keesiong.ng@gopivotal.com Draft, April 27, 2013, http://users.cecs.anu.edu.au/~kee/pls.pdf
  • Basic algorithm: PLS, алгоритм квадратичной оптимизации для выбора признаков.
  • Solution: построить матрицу плана с субоптимальным набором объектов and признаков, предложить функцию ошибки квадратичной оптимизации (по возможности развить на случай тензорного представления матрицы плана).
  • Novelty: Обобщен алгоритм выбора признаков (опубликованный две недели назад) для случая PLS.
  • Authors: А.М. Катруца, Strizhov V.V..

Task 12

  • Name: Massively multitask deep learning for drug discovery
  • Task: Разработать мультитасковую рекурентную нейронную сеть для предсказания биологической активности. Для каждой пары "молекула-протеин" требуется предсказать бинарную величину 0/1, означающую, что молекула связывается/не связывается с протеином.
  • Data: разреженные данные биологической активности для ~100K молекул против ~ 1000 протеинов. Молекулы представлены в формате SMILES строк (последовательность символов, кодирующая молекулу)
  • References:: https://arxiv.org/pdf/1502.02072
  • Basic algorithm: мультитасковая нейросеть, предсказывающая активность по числовым признакам, однотасковая рекурентная нейросеть
  • Solution: Мультитасковость означает, что требуется построить модель, которая получается на вход молекулу and предсказывает её биологическую активность против всех протеинов в выборке.
  • Novelty: Существующие методы не показали существенного улучшения качества DL модели по сравнению со стандартными ML моделями
  • Authors: Expert -- Alexander Isaev, consultant -- Maria Popova

Task 13

  • Name: Unsupervised representation for molecules
  • Task: Разработать unsupervised метод для репрезентации молекул
  • Data: ~1.5M молекул в формате SMILES строк (последовательность символов, кодирующая молекулу)
  • References:: https://www.cs.toronto.edu/~hinton/science.pdf
  • Basic algorithm: в настоящее время в качестве такой репрезентации используются выделенные вручную числовые признаки. Качество полученых репрезентаций можно сравнить с датасетом tox21 (10К молекул против 12 протеинов)
  • Solution: использовать свёрточные или рекуррентные сети для построения автоэнкодера.
  • Novelty: построение end-to-end модели для получения информативных признаков
  • Authors: Expert -- Alexander Isaev, consultant -- Maria Popova

Task 14

  • Name: Внутритекстовая когерентность как мера интерпретируемости тематических моделей текстовых коллекций.
  • Task: Интерпретируемость – это субъективная характеристика качества тематических моделей, измеряемая с помощью Expertных оценок. Когерентность – это мера совстречаемости тематических слов, вычислимая по тексту автоматически and хорошо коррелирующая с интерпретируемостью, как показано в серии публикаций Ньюмана and Мимно. Первая Task – оценить репрезентативность последовательности слов текста, по которым оценивается когерентность. Вторая Task – сравнить несколько новых методов измерения интерпретируемости and когерентности, основанных на выделении наиболее репрезентативной последовательности слов в исходном тексте.
  • Data: Коллекция научно-популярного контента ПостНаука, коллекция новостного контента.
  • References::
    1. Vorontsov K. V. Обзор вероятностных тематических моделей, 2017.
    2. N.Aletras, M.Stevenson. Evaluating Topic Coherence Using Distributional Semantics, 2013.
    3. D.Newman et al. Automatic evaluation of topic coherence, 2010
    4. D.Mimno et al. Optimizing semantic coherence in topic models, 2011
    5. http://palmetto.aksw.org/palmetto-webapp/
  • Basic algorithm: Стандартные методы оценивания интерпретируемости and когерентности тем в тематических моделях.
  • Solution: Новый метод измерения интерпретируемости and когерентности, эксперименты по поиску максимально коррелирующих мер интерпретируемости and когерентности, аналогичные [D.Newman, 2010].
  • Novelty: внутритекстовые меры интерпретируемости and когерентности ранее не предлагались.
  • Authors: Vorontsov K. V.. consultants: Viktor Bulatov, Анна Потапенко, Артём Попов.

Task 15

  • Name: Агрегирование гетерогенных текстовых коллекций в иерархической тематической модели русскоязычного научно-популярного контента.
  • Task: Реализовать and сравнить несколько способов объединения текстовых коллекций из различных источников в одну иерархическую тематическую модель. Построить классификатор, определяющий наличие темы в источнике.
  • Data: Коллекция научно-популярного контента ПостНаука, коллекция Википедии.
  • References::
    1. Vorontsov K. V. Обзор вероятностных тематических моделей, 2017.
    2. Чиркова Н. А, Vorontsov K. V. Аддитивная регуляризация мультимодальных иерархических тематических моделей // Машинное обучение and анализ данных, 2016. T. 2. № 2.
  • Basic algorithm: Алгоритм построения тематической иерархии в BigARTM, реализованный Надеждой Чирковой. Инструмент для разметки
  • Solution: Построить тематическую модель с модальностями источников and выделить темы, характерные только для одного из источников. Подготовить выборку для обучения классификатора, определяющего наличие темы в источнике.
  • Novelty: Аддитивная регуляризация тематических моделей к данной задаче ранее не применялась.
  • Authors: Vorontsov K. V.. consultants: Александр Романенко, Ирина Ефимова, Надежда Чиркова.

Task 16

  • Name: Применение методов символьной динамики в технологии информационного анализа электрокардиосигналов.
  • Task: Технология информационного анализа электрокардиосигналов, предложенная В.М.Успенским, предполагает преобразование сырого сигнала в символьную последовательность and поиск паттернов заболеваний в даннйо последовательности. До сих пор для поиска паттернов использовались преимущественно символьные n-граммы. В рамках данной работы предлагается расширить класс шаблонов, в котором производится поиск диагностических признаков заболеваний. Критерий качества -- AUC and MAP ранжирования диагнозов.
  • Data: Выборка электрокардиограмм с известными диагнозами.
  • References::
    1. Успенский В.М. Информационная функция сердца. Теория and практика диагностики заболеваний внутренних органов методом информационного анализа электрокардиосигналов.- М.:«Экономика and информация», 2008. - 116с
    2. Технология информационного анализа электрокардиосигналов.
  • Basic algorithm: Методы классификации .
  • Solution: Поиск логических закономерностей в символьных строках, методы символьной динамики, сравнение алгоритмов по критериям качества AUC and MAP (ранжирования диагнозов).
  • Novelty: До сих пор для поиска паттернов использовались преимущественно символьные n-граммы.
  • Authors: Vorontsov K. V.. consultants: Влада Целых.

Task Vorontsov +

  • Title: Dynamic hierarchical thematic model of the news flow.
  • Task: Develop an algorithm for classifying topics in news flows into new and ongoing ones. Apply the obtained criteria for creating new topics at all levels of the topic model hierarchy when adding the next piece of data to the text collection (for example, all news for one day).
  • Data: Collection of news in Russian. A subsample of news classified into two classes: new and ongoing topics.
  • Literature:
    1. Vorontsov K.V. Review of probabilistic thematic models, 2017.
    2. Chirkova N. A, Vorontsov K. V. Additive regularization of multimodal hierarchical topic models // Machine Learning and Data Analysis , 2016. T. 2. No. 2.
  • Basic Algorithm: An algorithm for constructing a thematic hierarchy in BigARTM, implemented by Nadezhda Chirkova. Known Topic Detection & Tracking algorithms.
  • Solution: Using BigARTM, selecting regularizers and their parameters, using the topic selection regularizer. Building an algorithm for classifying topics into new and ongoing.
  • Novelty: Additive regularization of topic models has not been applied to this problem before.
  • Authors: KV Vorontsov. Consultants: Alexander Romanenko, Artyom Popov.

Task Antiplagiarism +

  • Name: Отбор кандидатов в задаче поиска текстовых заимствований с перефразированием, основанный на векторизации текстовых фрагментов.
  • Task: Поиск текстовых заимствований по коллекции документов предполагает отбор небольшого множества кандидатов для последующего детального анализа. Task отбора кандидатов формулируется как поиск оптимального ранжирования документов коллекции по запросу относительно некоторой функции, являющейся оценкой для общей длины заимствований из документа коллекции в документ-запрос.
  • Data: PAN
  • References::
    1. Романов А.В., Хританков А.С. Отбор кандидатов при поиске заимствований в коллекции документов на иностранном языке pdf
  • Basic algorithm: метод шинглов с построением обратного индекса.
  • Solution: Векторизация фрагментов текста (word embeddings + свёрточные / рекуррентные нейронные сети) and последующий поиск ближайших объектов в многомерном метрическом пространстве.
  • Novelty: новый подход к решению задачи.
  • Authors: Алексей Романов (consultant)

Additional tasks

Task Vorontsov +

  • Name: Тематическое моделирование отрасли экономики по транзакционным данным банка.
  • Task: Проверить гипотезу, что большая выборка транзакций между фирмами достаточно хорошо описывается относительно небольшим множеством видов экономической деятельности (они же темы). Task сводится к разложению матрицы транзакционных данных «покупатели × продавцы» в произведение трёх неотрицательных матриц «покупатели × темы», «темы × темы», «темы × продавцы», при этом средняя матрица описывает направленный граф финансовых потоков в отрасли. Требуется сравнить несколько методов построения таких разложений and найти число тем, при котором наблюдаемое множество транзакций моделируется с достаточной точностью.
  • Data: выборка транзакций между фирмами, вида «покупатель, продавец, объём».
  • References::
    1. Vorontsov K. V. Обзор вероятностных тематических моделей, 2017.
  • Basic algorithm: Стандартные методы неотрицательных матричных разложений.
  • Solution: Регуляризованный ЕМ-алгоритм для разреженных неотрицательных матричных разложений. Визуализация графа финансовых потоков. Тестирование алгоритма на синтетических данных, проверка гипотезы об устойчивости разреженных решений.
  • Novelty: тематическое моделирование ранее не применялось к анализу финансовых транзакционных данных.
  • Authors: Vorontsov K. V.. consultants: Виктор Сафронов, Роза Айсина.

Task scoring +

  • Name: Порождение and выбор признаков при построении модели кредитного скоринга.
  • Task: Построение кредитных скоринговых моделей выполняется по шагам. В частности, выполняется ряд независимых преобразований отдельных признаков, порождаются новые признаки. На каждом шаге используется собственный критерий качества. Требуется построить скоринговую модель, адекватно описывающую выборку. Максимизация качества модели на каждом шаге не гарантирует максимального качества полученной модели. Предлагается отказаться от пошагового построения скоринговой модели. Для этого критерий качества должен включать все оптимизируемые параметры модели.
  • Data: Вычислительный эксперимент будет выполнен на 5-7 выборках, которые требуется найти. Желательно, чтобы выборки имели одну природу, например, выборки анкет потребительского кредита.
  • References:: Siddique N. Constructing scoring models, SAS. Hosmer D., Lemeshow S., Applied logistic regression, Wiley. Katrutsa A.M., Strijov V.V. Comprehensive study of feature selection methods to solve multicollinearity problem according to evaluation criteria // Expert Systems with applications, 2017.
  • Basic algorithm: Алгоритм построения скоринговой модели, рекомендуемый SAS.
  • Solution: Каждый шаг процедуры представляется в виде задачи оптимизации. Оптимизируемые параметры объединяются, включается Task выбора признаков как Task смешанной оптимизации.
  • Novelty: Предложена функция ошибки, при использовании который порождение and выбор признаков, а также оптимизация параметров модели выполняются совместно.
  • Authors: Т.В. Вознесенская, Strizhov V.V..

Task Popova +

  • Name: Representation of molecules in 3D
  • Task: Разработать репрезентации 3D структуры молекул, которые обладали бы свойством вращательной and трансляционной инвариантности.
  • Data: Миллионы молекул, заданные 3D координатами
  • References:: https://arxiv.org/abs/1610.08935, http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.98.146401
  • Basic algorithm: low rank matrix/tensor factorization
  • Solution: Молекулы имеют различное число атомов, and поэтому матрица их 3D координат имеет размерность Nx3. Нужно найти математическое преобразование, которое бы независило от N (N - число атомов).
  • Novelty: существующие алгоритмы зависят от числа атомов в молекуле
  • Authors: Expert -- Alexander Isaev, consultant -- Maria Popova

Task Maksimov +

  • Name: Оптимальный алгоритм для восстановления блочных гамильтонианов (моделей XY and Гейзенберга).
  • Task: Task состоит в восстановлении блочных гамильтонианов с непрерывными спинами (обощение модели Изинга на двух- and трёхмерные спины) по наблюдаемым данным. Эта постановка представляет собой частный случай области машинного обучения, известной как обучение без учителя (unsupervised learning). Восстановление графической спиновой модели по данным наблюдений является важной задачей в физике. Основой алгоритма будет служить адаптация нового оптимального метода экранирования взаимодействий (interaction screening), разработанного для модели Изинга. Процесс решения будет сочетать в себе знакомство с теоретическими методами компьютерных наук / машинного обучения and численные эксперименты.
  • Data: Симулированные конфигурации блочных спиновых моделей.
  • References::
    1. Lokhov et al., "Optimal structure and parameter learning of Ising models", arXiv:1612.05024 (2016) {https://arxiv.org/abs/1612.05024}
    2. Vuffray et al., "Interaction screening: efficient and sample-optimal learning of Ising models", NIPS 2016 {https://arxiv.org/abs/1605.07252}
    3. Tyagi et al., "Regularization and decimation pseudolikelihood approaches to statistical inference in XY spin models", Phys. Rev. B 2016 {https://arxiv.org/abs/1603.05101}
  • Basic algorithm: Динамический метод экранирования взаимодействий. Сравнение с методом максимального псевдо-правдоподобия (pseudolikelihood).
  • Novelty: Алгоритм основанный на динамическом методе экранирования взаимодействия имеет хорошие шансы быть оптимальным для данной задачи, т.к. соотествующий метод является оптимальным для обратной задачи Изинга.
  • Автор: consultants Андрей Лохов, Yuri Maksimov. Expert Михаил Чертков

Task Khritankova (Transfer Learning)

  • Name: Применение сетей глубокого обучения для переноса моделей классификации в случае недостаточного объема данных.
  • Task:
    1. Разработать алгоритм вычисления набора скрытых признаков в задаче symmetric homogeneous transfer learning , решение задачи классификации в котором не зависит от исходной области, and который не хуже, чем при решении для каждого области отдельно (transfer error) для случая небольших размеров выборки с ошибками в разметке
    2. Разработать алгоритм перехода к скрытому набору признаков без использования разметки (unsupervised domain adaptation)
  • Data: teraPromise-CK (33 датасета с одинаковыми признаками, но разными распределениями).
  • References::Базовая статья: Xavier Glorot , Antoine Bordes , Yoshua Bengio. (2011) Domain Adaptation for Large-Scale sentiment classification: A Deep Learning approach / In Proceedings of the Twenty-eight International Conference on Machine Learning, ICML.

Статьи с идеями по доработкам алгоритма будут выданы на руки (несколько).

  • Basic algorithm: SDA (Stacked Denoising Autoencoder) – описан в статье базовой статье Glorot et al.
  • Solution: Взять Basic algorithm, а) попробовать улучшить для применения к небольшим датасетам 100-1000 объектов (когда and применяется transfer learning) путем применения регуляризаторов, корректировкой архитектуры автокодировшика, корректировки алгоритма обучения (например, bootstrapping) б) исследовать модель на устойчивость к ошибкам в разметке (label corruption / noisy labels) and предложить доработку для повышения устойчивости (robustness).
  • Novelty: Получение устойчивого алгоритма переноса моделей классификации на небольших объемах данных с ошибками в разметке.
  • Authors: Хританков


Task INRIA-МТФИ +

  • Name: Оценка энергии связывания белка and маленьких молекул.
  • Task: Моделирование связывания белка and маленькой молекулы (далее -- лиганда) основывается на том, что наилучший лиганд в своем наилучшем положении имеет наименьшую свободную энергию взаимодействия с белком. Необходимо оценить свободную энергию связывания белка and лиганда. Для обучения могут использоваться комплексы белков с лигандами, причем для каждого белка есть несколько положений лиганда: 1 правильное, "нативное", для которых энергия минимальна, and несколько сгенерированных неправильных. Для трети набора данных известны значения, пропорциональные искомой энергии связывания лигандов в нативных положениях с белком. Есть отдельный тестовый сет, состоящий из 1) комплексов белков and лигандов, для которых нужно найти наилучшую позу лиганда (алгоритм получения положений лиганда отличается от используемого при обучении), 2) комплексов белков and лигандов, для нативных поз которых нужно предсказать энергию связывания, and 3) белков, для которых нужно найти наиболее сильно связывающийся лиганд.
  • Data: Около 10000 комплексов: для каждого из них есть 1 нативная поза and 18 (можно сгенерировать больше) ненативных. Основными дескрипторами являются гистограммы распределений расстояний между различными атомами белка and лиганда, размерность вектора дескрипторов ~ 20,000. Набор дескрипторов может быть расширен (можно генерировать позы с разным отклонением and использовать его как дескриптор, можно добавить свойства маленьких молекул: число связей, вокруг которых в молекуле возможен поворот, площадь ее поверхности, разбиение ее поверхности диаграммой Вороного. Данные будут предоставлены в виде бинарных файлов со скриптом на python для чтения.
  • References:: PEPSI-Dock: a detailed data-driven protein–protein interaction potential accelerated by polar Fourier correlation Predicting Binding Poses and Affinities in the CSAR 2013―2014 Docking Exercises Using the Knowledge-Based Convex-PL Potential
  • Basic algorithm: Мы использовали линейный SVM (это просто lecture notes, я не вижу смысла тут давать Вапника, тем более что все это, включая эти lecture notes, гуглится), связь которого с оценкой энергии, выходящей за рамки задачей классификации, описана в перечисленных выше статьях. Для учета известных из эксперимента значений, пропорциональных энергии, предлагается использовать линейную регрессию SVR .
  • Solution: Необходимо свести использованную ранее задачу SVM к задаче регрессии and решить стандартными методами. Для проверки работы алгоритма будет использован как описанный выше тест, так and несколько других тестовых сетов с аналогичными Taskми, но другими данными.
  • Novelty: Правильная оценка качества связывания белка and лиганда используется при разработке лекарства для поиска молекул, наиболее сильно взаимодействующих с исследуемым белком.

Особую важность представляет оценка значений энергии связывания белка с лигандом: определенный разными группами на предложенном тесте коэффициент корреляции (Пирсона) энергии с ее экспериментальными значениями не превышает 0.7. Предсказание наиболее сильно связывающегося лиганда из большого числа не связывающихся с белком молекул также вызывает трудности. Целью данной работы является получение метода, позволяющего достаточно точно оценивать связывание белка с лигандами. С точки зрения машинного обучения and оптимизации интерес представляет объединение задач классификации and регрессии.

  • Добавление Даны несколько наборов данных, описывающие атом в молекуле или связь между атомами, с маленьким feature вектором (обычно это 3-10 дескрипторов) and несколькими классами, соответствующими гибридизации атома или порядку связи. Самих данных может быть от ~ 100 до 20,000 векторов в зависимости от типа атома. Нужно протестировать на этом какое-нибудь мультиклассовое машинное обучение (random forests, нейронную сеть, что-то другое), можно что угодно делать с дескрипторами. Мы сейчас используем SVM. Важна не только точность, но and вычислительная сложность предсказания.
  • Authors: Sergei Grudinin, Maria Kadukova

Task Strizhov and Kulunchakov +

  • Name: Creation of delay-operators for multiscale forecasting by means of symbolic regression
  • Task: Suppose that one needs to build a forecasting machine for a response variable. Given a large set of time series, one can advance a hypothesis that they are related to this variable. Relying upon this hypothesis, we can use given time series as features for the forecasting machine. However, the values of time series could be produced with different frequencies. Therefore, we should take into account not only the values, but the delays as well. The simplest model for forecast is a linear one. In the presence of large set of features this model can approximate the response quite well. To avoid the problem of multiscaling, we introduce a definition of delay-operators. Each delay-operator corresponds to one time series and represents continuous correlation function. This correlation function shows a dependence between the response variable and corresponding time series. Therefore, each delay-operator put weights on the values of corresponding time series depending on the greatness of the delay. Having these delay-operators, we avoid the problem of multiscaling. To find them, we use genetic programming and symbolic regression. If the resulted weighted linear regression model would produce poor approximation, we can use a nonlinear one instead. To find good nonlinear function, we would use symbolic regression as well.
  • Data: Any data from the domain of multiscalse forecating of time series. See the full version of this introduction.
  • References:: to be handed by V.V.Strijov
  • Basic algorithm: to be handed by V.V.Strijov
  • Solution: Use genetic algorithms applied to symbolic regression to create and test delay-operators in multiscale forecasting.
  • Novelty: to be handed by V.V.Strijov
  • Authors: supervisor: V.V.Strijov, consultant: A.S. Kulunchakov


2016

Author Topic Link Consultant Reviewer Report Letters Grade Magazine
Гончаров Алексей (пример) Метрическая классификация временных рядов code,

paper, slides

Maria Popova Задаянчук Андрей BMF AILSBRCVTDSWH> 10 ИИП
Баяндина Анастасия Тематические модели дистрибутивной семантики для выделения этнорелевантных тем в социальных сетях paper

slides video

Анна Потапенко Олег Городницкий BF AILSB++RCVTDEWHS 10
Белозерова Анастасия Согласование логических and линейных моделей классификации в информационном анализе электрокардиосигналов code

paper slides video

Влада Целых Малыгин Виталий BF AILSB+RC+VTD>E0WH>S 10
Владимирова Мария Бэггинг нейронных сетей в задаче предсказания биологической активности клеточных рецепторов code

paper slides vido

Maria Popova Володин Сергей BMF AILSBRCVTD>E>WHS 10
Володин Сергей Вероятностный подход для задачи предсказания биологической активности ядерных рецепторов code paper slides

video, itis

Maria Popova Мария Владимирова BMF AILSBRCVTDEWHS 10
Городницкий Олег Адаптивный нелинейный метод восстановления матрицы по частичным наблюдениям code

paper slides, itis

Михаил Трофимов Анастасия Баяндина M A++I++L++S+B+R+C++VTDE+WH 10
Иванычев Сергей Синергия алгоритмов классификации (SVM Multimodelling) code

paper slides

Alexander Aduenko BM A+I+L++S+BRCVTDEW+H 10
Ковалева Валерия Регулярная структура редких макромолекулярных кластеров code

paper slides video, itis

Ольга Вальба, Yuri Maksimov Дмитрий Федоряка BM A+IL+SBRCVTD0E0WH 10
Макарчук Глеб Преобразования временных рядов для декодирование движения руки с помощью ECoG сигналов (electrocorticographic signals) у обезьян code,

paper slides video

Andrey Zadayanchuk BF AI+L+S+BRС>V>T+D>E0WH>S 10
Малыгин Виталий Применение комбинаторных оценок переобучения пороговых решающих правил для отбора признаков в задаче медицинской диагностики методом В. М. Успенского code,

paper, slides

Шаура Ишкина Белозёрова Анастасия B AILSBRCVTDEWH 10
Молибог Игорь Использование методов снижения размерности при построении признакового пространства в задаче обнаружения внутреннего плагиата

paper, doc, slides, itis

Anastasia Motrenko Сафин Камиль BMF AILSBRCVTDEWHS 10
Погодин Роман Определение положения белков по электронной карте code, paper, slides

video, itis

Александр Катруца Андрей Рязанов BMF AILSBRСVTDEWHS 10
Рязанов Андрей Восстановление первичной структуры белка по геометрии его главной цепи folder

paper slides video, itis

Михаил Карасиков Роман Погодин BMF AIL+SBRC++VTD+EWHS 10
Сафин Камиль Определение заимствований в тексте без указания источника code, paper

slides video

Михаил Кузнецов Молибог Игорь BMF AIL+SBRC>V>T>D>E0WHS 10
Федоряка Дмитрий Смеси моделей векторной авторегрессии в задаче прогнозирования временных рядов code,

slides, paper

Radoslav Neichev Ковалева Валерия BM AILSBRCV-T>D0E0WH> 10
Цветкова Ольга Построение скоринговых моделей в системе SAS code,

paper slides

Раиса Джамтырова Чигринский Виктор BF A+I+L+S+B+R+C+V0T0D0E0WH>S 10
Чигринский Виктор Аппроксимация границ радужки глаза code paper

slides video

Юрий Ефимов B AI+L+SBRCV+TDEHFS 10

Task 1

  • Data: Синергия алгоритмов классификации. Данные из репозитория UCI, чтобы можно было сравнивать напрямую с другими работами, в частности работами Вапника.
  • References:: существуют разные подходы к комбинированию SVM: например, bagging (http://www.ecse.rpiscrews.us/~cvrl/FaceProject/Homepage/Publication/ICPR04_final_cameraready_v4.pdf), также пробуют and boosting (http://www.researchgate.net/profile/Hong-Mo_Je/publication/3974309_Pattern_classification_using_support_vector_machine_ensemble/links/09e415091bdc559051000000.pdf).
  • Basic algorithm: Описан в постановке задачи
  • Solution: модификация базового алгоритма, или просто сам Basic algorithm. Главное - сравнить с другими методами and сделать выводы, в частности о связи наличия улучшения в качестве and разнообразия множеств опорных объектов, построенных разными SVM ами.
  • Novelty: известно (например, из лекций Константина Вячеславовича), что строить короткие композиции из сильных классификаторов (например, SVM) с помощью бустинга не получается (хотя все же пробуют (см. литературу)). Поэтому предлагается вместо линейной комбинации строить нелинейную. Предполагается, что такая композиция может дать прирост качества по сравнению с одиночным SVM.
  • consultant: Alexander Aduenko

Task 2

  • Name: Темпоральная тематическая модель коллекции пресс-релизов.
  • Task: Разработка методов анализа тематической структуры большой текстовой коллекции and её динамики во времени. Проблемой является оценка качества построенной структуры. Требуется реализовать критерии устойчивости and полноты темпоральной тематической модели с использованием ручного отбора найденных тем по их интерпретируемости, различности and событийности.
  • Data: Коллекция пресс-релизов внешнеполитических ведомств ряда стран за 10 лет, на английском языке.
  • References::
    1. Дойков Н.В. Адаптивная регуляризация вероятностных тематических моделей. ВКР бакалавра, ВМК МГУ. 2015.
  • Basic algorithm: Классический LDA Д.Блэя c post-hoc анализом времени.
  • Solution: Реализация аддитивно регуляризованной тематической модели с помощью библиотеки BigARTM. Построение серий тематических моделей. Оценивание их интерпретируемости, устойчивости and полноты.
  • Novelty: Критерии устойчивости and полноты тематических моделей являются новыми.
  • consultant: Никита Дойков, автор задачи Vorontsov K. V..

Task 3

  • Name: Согласование логических and линейных моделей классификации в информационном анализе электрокардиосигналов.
  • Task: Имеются логические классификаторы, основанные на выявлении диагностических эталонов для каждого заболевания and построенные Expertом в полуручном режиме. Для этих классификаторов определены оценки активностей заболеваний, которые уже много лет используются в диагностической системе and удовлетворяют пользователей-врачей. Мы строим линейные классификаторы, которые обучаются полностью автоматически and по качеству классификации опережают логические. Однако прямой перенос методики оценивания активности на линейные классификаторы оказался невозможен. Требуется построить линейную модель активности, настроив её на воспроизведение известных оценок активности логического классификатора.
  • Data: Выборка более 10 тысяч электрокардиограмм с диагнозами по 32 заболеваниям.
  • References:: выдадим :)
  • Basic algorithm: Линейный классификатор.
  • Solution: Методы линейной регрессии, линейной классификации, отбора признаков.
  • Novelty: Task согласования двух моделей различной природы может рассматриваться как обучение с привилегированной информацией (learning with privileged information) — перспективное направление, предложенное классиком машинного обучения В.Н.Вапником несколько лет назад.
  • consultant: Влада Целых, автор задачи Vorontsov K. V..

Task 4

  • Name: Тематическая модель классификации для диагностики заболеваний по электрокардиограмме.
  • Task: Технология информационного анализа электрокардиосигналов по В.М.Успенскому основана на преобразовании ЭКГ в символьную строку and выделении информативных наборов слов — диагностических эталонов каждого заболевания. Линейный классификатор строит один диагностический эталон для каждого заболевания. В системе скрининговой диагностики «Скринфакс» сейчас используется четыре эталона для каждого заболевания, построенных в полуручном режиме. Требуется полностью автоматизировать процесс построения диагностических эталонов and определять их оптимальное количество для каждого заболевания. Для этого предполагается доработать тематическую модель классификации С.Цыгановой, выполнить новую реализацию под BigARTM, расширить вычислительные эксперименты, улучшить качество классификации.
  • Data: Выборка более 10 тысяч электрокардиограмм с диагнозами по 32 заболеваниям.
  • References:: выдадим :)
  • Basic algorithm: Модели классификации В.Целых, тематическая модель С.Цыгановой.
  • Solution: Тематическая модель, реализованная с помощью библиотеки BigARTM.
  • Novelty: Тематические модели ранее не применялись для классификации дискретизированных биомедицинских сигналов.
  • consultant: Светлана Цыганова, автор задачи Vorontsov K. V..

Task 5

  • Name: Тематические модели дистрибутивной семантики для выделения этнорелевантных тем в социальных сетях.
  • Task: Тематическое моделирование текстовых коллекций социальных медиа сталкивается с проблемой сверх-коротких документов. Не всегда ясно, где проводить границы между документами (возможные варианты: отдельный пост, стена пользователя, все сообщения данного пользователя, все сообщения за данный день в данном регионе, and т.д.). Тематические модели дают интерпретируемые векторные представления слов and документов, но их качество зависит от распределения длин документов. Модель word2vec независима от длин документов, так как учитывает лишь локальные контексты слов, но координаты векторных представлений не допускают тематическую интерпретацию. Задачей проекта является построение гибридной модели, объединяющей достоинства and свободной от недостатков обеих моделей.
  • Data: Коллекции социальных сетей ЖЖ and ВК.
  • References:: выдадим :)
  • Basic algorithm: Тематические модели, ранее построенные на этих данных.
  • Solution: Реализация регуляризатора дистрибутивной семантики, аналогичного языковой модели vord2vec, в библиотеке BigARTM.
  • Novelty: Пока в литературе нет языковых моделей, объединяющих основные преимущества вероятностных тематических моделей and модели word2vec.
  • consultant: Анна Потапенко, по техническим вопросам Murat Apishev, автор задачи Vorontsov K. V..

Task 7

  • Name: определение положения белков по электронной карте
  • Task: неформально --- есть наборы экспериментально определённых карт расположения белков в комплексах, часть из них известна в высоком разрешении, необходимо восстановить всю карту в высоком разрешении; формально --- есть матрицы and вектора энергий соответствующие каждой карте белкового комплекса, нужно определить какой набор белков минимизирует квадратичную форму, образованую матрицей and вектором.
  • Data: экспериментальные данные с сайта http://www.emdatabank.org/ будуь преобразованы в матрицы в вектора энергий. Понимание биофизической природы не обязательно.
  • References:: статьи по методам решения задач квадратичного программирования and различным релаксациям
  • Basic algorithm: методы квадратичного программирования с различными релаксациями
  • Solution: минимизация суммарной энергии белкового комплекса
  • Novelty: применение методов квадратичного программирования and исследование их точности в Taskх восстановления электронных карт
  • consultant: Александр Катруца, автор задачи: Sergei Grudinin.
  • Желательные навыки: понимание and интерес к методам оптимизации, работа с пакетом CVX

Task 8

  • Name: Классификация физической активности: исследование изменения пространства параметров при дообучении and модификации моделей глубокого обучения
  • Task: Дана модель классификации по выборке временных сегментов, записанных с акселерометра мобильного телефона. Модель представляет собой многослойную нейросеть. Требуется 1) исследовать дисперсию and матрицу ковариаций параметров нейросети при различных расписаниях оптимизации (т.е. при различных подходах к поэтапному обучению). 2) на основе полученной матрицы ковариаций параметров предложить эффективный способ модификации модели глубокого обучении.
  • Data: Выборка WISDM http://www.cis.fordham.edu/wisdm/dataset.php.
  • References::
    • Zadayanchuk A.I., Popova M.S., Strizhov V.V. Выбор оптимальной модели классификации физической активности по измерениям акселерометра http://strijov.com/papers/Zadayanchuk2015OptimalNN4.pdf
    • Попова М. С., Strizhov V.V. Построение сетей глубокого обучения для классификации временных рядов - http://strijov.com/papers/PopovaStrijov2015DeepLearning.pdf
    • Oleg BakhteevЮ., Popova M.S., Strizhov V.V. Системы and средства глубокого обучения в Taskх классификации
    • LeCun Y. Optimal Brain Damage - yann.lecun.com/exdb/publis/pdf/lecun-90b.pdf
    • Работы по пред-обучению (pre-training) and дообучению (fine-tuning)
  • Basic algorithm: Базовая модель описана в статье "Построение сетей глубокого обучения для классификации временных рядов". Алгоритм можно реализовать как с помощью библиотеки PyLearn или keras (другие библиотеки and языки программирования также допустимы).
  • Solution: Анализ матрицы ковариаций, построение add-del метода на основе полученных данных.
  • Novelty: Методика исследования ковариационной матрицы большой размерности, а также полученный алгоритм модификации модели важны and будут использоваться в дальнейшем при анализе моделей глубокого обучения.
  • consultant: Oleg Bakhteev

Task 9

  • Name: восстановление первичной структуры белка по геометрии его главной цепи
  • Task: на основе главной цепи белка, то есть по сути его геометрии, надо восстановить первичную структуру белка, то есть какой последовательности аминокислот соотвествует заданная геометрия главной цепи. Предлагается это делать на основе минимизации суммарной энергии белка, выраженной квадратичной формой скорее всего не положительно определённой.
  • Data: на выбор studentа: собранные матрицы энергий для различных белков на основе их описаний в формате PDB или сами PDB-файлы; в последнем случае необходимо будет собрать матрицы для дальнейшей работы
  • References:: статьи по методам решения задач квадратичного программирования and различным релаксациям
  • Basic algorithm: методы квадратичного программирования с различными релаксациями
  • Solution: минимизация суммарной энергии белка
  • Novelty: применение методов квадратичного программирования and исследование их точности
  • consultant: Михаил Карасиков, автор задачи: Sergei Grudinin.
  • Желательные навыки: понимание and интерес к методам оптимизации, работа с пакетом CVX

Task 10

  • Name: Multi-task learning подход для задачи предсказания биологической активности ядерных рецепторов
  • Task: В задаче необходимо построить multi-task модель, предсказывающую взаимодействие двух типов молекул: рецепторов and протеинов. Решение этой задачи необходимо для разработки новых лекарств (drug design).
  • Data: описание 8500+ протеинов and метки для 12 рецепторов
  • References:: будет отправлена studentу
  • Basic algorithm: multi-task lasso регрессия из библиотеки python scikit-learn
  • Solution: обобщение линейной регрересси на случай multi-task в вероятностной интерпретации
  • Novelty: Multi-task learning подход является новаторским в области drug design
  • consultant: Maria Popova
  • Желательные навыки: понимание and интерес к теории вероятности, готовность быстро разобраться в различных подходах к регрессии, знание или готовность к освоению Python

Task 11

  • Name: Бэггинг нейронных сетей в задаче предсказания биологической активности ядерных рецепторов.
  • Task: В задаче необходимо реализовать бэггинг (bootstrap aggregating) для двухслойной нейронной сети. Такая модель будет являться мультитасковой and предсказывать взаимодействие двух типов молекул: рецепторов and протеинов. Решение этой задачи необходимо для разработки новых лекарств (drug design).
  • Data: описание 8500+ протеинов and метки для 12 рецепторов
  • References:: будет отправлена studentу
  • Basic algorithm: двухслойная нейронная сеть
  • Solution: Композиция базовых классификаторов бэггинг
  • Novelty: Такой подход является новаторским в области drug design
  • consultant: Maria Popova

Task 12

  • Name: Смеси моделей в векторной авторегрессии в задаче прогнозирования (больших) временных рядов.
  • Task: Имеется набор временных рядов длины T, содержащих показания различных датчиков, отражающих состояние устройства. Необходимо предсказать следующие t показаний датчиков. Практическая значимость: перед поломкой состояние устройства меняется, предсказание "аномального" поведения поможет своевременно принять меры and избежать поломки или минимизировать потери.
  • Data: Многомерные временные ряды с показаниями различных датчиков серверов (загрузка ЦП, памяти, температура)
  • References:: Ключевые слова: mixture models, boosting, Adaboost, векторная авторегрессия.
    • Александр Цыплаков. Введение в прогнозирование в классических моделях временных рядов. [89]
    • Нейчев Р.Г., Катруца А.М., Strizhov V.V. Выбор оптимального набора признаков из мультикоррелирующего множества в задаче прогнозирования[90]
    • Christopher M. Bishop. Pattern Recognition and Machine Learning. Страница 667
  • Basic algorithm: Бустинг, алгоритм Adaboost.
  • Solution: Использовать для построения проноза смесь нескольких линейных моделей вместо одной сложной.
  • Novelty: Доработано пространство параметров для смеси моделей в векторной авторегрессии.
  • consultant: Radoslav Neichev

Task 13

  • Name: Отбор мультикоррелирующих признаков в задаче векторной авторегрессии.
  • Task: Имеется набор временных рядов, содержащих показания различных датчиков, отражающих состояние устройства. Показания датчиков коррелируют между собой. Необходимо отобрать оптимальный набор признаков для решения задачи прогнозирования.
  • Data: Многомерные временные ряды с показаниями различных датчиков серверов (загрузка ЦП, памяти, температура)
  • References:: Ключевые слова: bootstrap aggreagation, метод Белсли, векторная авторегрессия.
    • Нейчев Р.Г., Катруца А.М., Strizhov V.V. Выбор оптимального набора признаков из мультикоррелирующего множества в задаче прогнозирования[91]
  • Basic algorithm: метод Белсли для одномерной авторегрессии (см. статью из списка литературы).
  • Solution: Применить метод Белсли для обнаружения коррелирующих признаков.
  • Novelty: Метод Белсли применяется для векторной авторегрессии.
  • consultant: Radoslav Neichev

Task 14

  • Name: Порождение признаков в задаче прогнозирования.
  • Task: Имеется набор временных рядов, содержащих показания различных датчиков, отражающих состояние устройства. Необходимо расширить пространство признаков с помощью нелинейных параметрический порождающих функций.
  • Data: Многомерные временные ряды с показаниями различных датчиков серверов (загрузка ЦП, памяти, температура)
  • References:: Ключевые слова: криволинейная регрессия, порождение признаков, нелинейная регрессия, аппроксимация временных рядов.
    • М.П. Кузнецов, Strizhov V.V., М.М. Медведникова. Алгоритм многоклассовой классификации объектов, описанных в ранговых шкалах.[92]
  • Basic algorithm: Непараметрические порождающие функициии.
  • Solution: Применить к признакам квазилинейные and нелинейные преобразования зависящие от параметра.
  • Novelty: Предложен новый набор признаков для решения авторегрессионных задач.
  • consultant: Roman Isachenko

Task 15

  • Name: Преобразования временных рядов для декодирование движения руки с помощью ECoG сигналов (electrocorticographic signals) у обезьян.
  • Task: Имеется набор временных рядов, записи ECoG сигналов. Необходимо выделить признаки с помощью преобразований временных рядов (например, оконного преобразования Фурье).
  • Data: Многомерные временные ряды с показаниями ECOG and данные о движении обезьян [93]
  • References:: Ключевые слова: выделение признаков, преобразования временных рядов, ECoG signal processing
    • Zenas C. Chao, Yasuo Nagasaka and Naotaka Fujii. Long-term asynchronous decoding of arm motion using electrocorticographic signals in monkeys[94]
  • Basic algorithm: Вейвлет-преобразование (англ. Wavelet transform)
  • Solution: Выделение признаков из ECoG различными методами.
  • Novelty: Анализ оптимальности Вейвлет-преобразования в Taskх обработки ECoG сигналов
  • consultant: Задаянчук Андрей

Task 16

  • Name: Адаптивный нелинейный метод восстановления матрицы по частичным наблюдениям
  • Task: Пусть есть неизвестная (возможно многомерная) матрица A, позиция элемента в ней описывается целочисленным вектором p. Известны значения матрицы на некотором подмножестве ее элементов. Требуется найти параметризацию and параметры такие, что на некотором некотором подмножестве элементов минимизируется квадратичное отклонение. Более подробное описание по ссылке [95]
  • Data: модельные данные, Netflix Prize Data Set, MovieLens 20M Dataset, Criteo Display Advertising Challenge Dataset
  • References::
    • "ACCAMS: Additive Co-Clustering to Approximate Matrices Succinctly" (Beutel, Amr Ahmed, Smola)
    • "Non-linear Matrix Factorization with Gaussian Processes" (Neil D. Lawrence)
    • "Low-rank matrix completion using alternating minimization" (Prateek Jain, Praneeth Netrapalli, Sujay Sanghavi)
  • Basic algorithm: Низкоранговое приближение
  • Solution: and параметры, and параметризацию искать из данных.
  • Novelty: Обобщение работ в данной области; предложена новая модель, эфективность которой предлагается проверить
  • consultant: Михаил Трофимов
  • Желательные навыки: python

Task 17

  • Name: Построение скоринговых моделей в системе SAS (либо MATLAB).
  • Task: Описать основные этапы построения скоринговых моделей. На этапе подготовки данных решается Task фильтрации выборов (удаления шумовых объектов). Так как выборка содержит значительное число признаков, не коррелирующих с платежеспособностью, необходимо решать задачу отбора признаков. Кроме того, в силу неоднородности данных (например, по регионам) предлагается строить смесь моделей, в которой каждая модель описывает свое подмножество выборки. При этом различным компонентам смеси могут соответствовать разные наборы признаков.
  • Data: Кредитная Story/анкеты потенциальных заемщиков [96], [97].
  • References::
  • Basic algorithm: Логистическая регрессия
  • Solution: Смесь моделей
  • Novelty: Описан способ построения скоринговых карт, в котором в задачу оптимизации включены как порождение признаков, так and мультимоделирование.
  • consultant: Раиса Джамтырова
  • Желательные навыки: SAS

Task 18

  • Name: Аппроксимация границ радужки глаза.
  • Task: По изображению человеческого глаза определить окружности, аппроксимирующие внутреннюю and внешнюю границу радужки.
  • Data: Растровые монохромные изображения, типичный размер 640*480 пикселей (однако, возможны and другие размеры)

[98], [99].

  • References::
    • К.А.Ганькин, А.Н.Гнеушев, И.А.Матвеев Сегментация изображения радужки глаза, основанная на приближенных методах с последующими уточнениями // Известия РАН. Теория and системы управления, 2014, № 2, с. 78–92.
    • Duda, R. O. Use of the Hough transformation to detect lines and curves in pictures / R. O. Duda, P. E. Hart // Communications of the ACM. 1972. Vol. 15, no. 1. Pp.
  • Basic algorithm: Ефимов Юрий. Поиск внешней and внутренней границ радужки на изображении глаза методом парных градиентов, 2015.
  • Solution: См. Iris_circle_problem.pdf
  • Novelty: Предложен быстрый беспереборный алгоритм аппроксимации границ с помощью линейных мультимоделей.
  • consultant: Юрий Ефимов (автор Стрижов, Expert Матвеев)

Task 19

  • Name: Аппроксимация комбинаторных оценок переобучения для отбора признаков в задаче медицинской диагностики.
  • Task: Технология информационного анализа электрокардиосигналов по В. М. Успенскому применяется для диагностики заболеваний внутренних органов по электрокардиограмме. Линейный наивный байесовский классификатор с отбором признаков хорошо зарекомендовал себя в этой задаче. Однако для отбора признаков до сих пор использовались только очень простые жадные стратегии. Предлагается использовать более интенсивные переборные стратегии, чтобы найти лучшие and более короткие диагностические наборы признаков. Однако чем интенсивнее перебор, тем выше вероятность переобучения. Для сокращения переобучения предлагается использовать комбинаторные оценки переобучения пороговых решающих правил. Для эффективного вычисления этих оценок предлагается использовать суррогатное моделирование.
  • Data: Выборки векторов признаковых описаний ЭКГ, полученные с помощью системы скрининговой диагностики «Скринфакс». Будут выданы.
  • References::
  • Basic algorithm: линейный наивный байесовский классификатор с отбором признаков.
  • Solution: Для оценивания переобучения используются точные комбинаторные формулы. Для аппроксимации (суррогатного моделирования) этих формул используется MVR Composer. Для отбора признаков используются эвристические полужадные алгоритмы комбинаторной оптимизации.
  • Novelty: Ранее для отбора признаков комбинаторные оценки переобучения не применялись. Данный метод позволяет сокращать диагностические наборы признаков and улучшать качество классификации.
  • consultant: Ишкина Шаура, Кулунчаков Андрей (MVR Composer), автор задачи: Vorontsov K. V.

Task 20

  • Name: Модель порождения объектов в задаче прогнозирования временных рядов
  • Task: Построить модель порождения объектов для задачи прогнозирования, которая будет создавать качественную выборку для последующего решения задачи прогнозирования.
  • Data: Временные ряды потребления электроэнергии, временные ряды акселерометра мобильного телефона
  • References::
    • Keogh E. J., Pazzani M. J. Scaling up dynamic time warping to massive datasets
    • Salvador S., Chan P. Fastdtw: Toward accurate dynamic time warping in linear time and space
    • Kuznetsov M.P., Ivkin N.P. Алгоритм классификации временных рядов акселерометра по комбинированному признаковому описанию
    • Карасиков М. Е. Классификация временных рядов в пространстве параметров порождающих моделей [100]
  • Basic algorithm: Различные эвристики
  • Постановка задачи: Формулировка and подробное описание задачи приведено по ссылке [101]
  • Novelty: рассмотрение модели порождения данных в подобной задаче
  • consultant: Гончаров Алексей

Task 21

  • Name: Алгоритм прогнозирования структуры локально-оптимальных моделей
  • Task: Требуется спрогнозировать временной ряд с помощью некоторой параметрической суперпозицией алгебраических функций. Предлагается не стоить прогностическую модель, а спрогнозировать ее, то есть предсказать структуру аппроксимирующей суперпозиции. Вводится класс рассматриваемых суперпозиций, and на множестве таких структурных описаний проводится поиск локально-оптимальной модели для рассматриваемой задачи. Task состоит в 1) поиске подходящего структурного описания модели 2) описания алгоритма поиска той структуры, которая будет соответствовать оптимальной модели 3) описания алгоритма обратного построения модели по ее структурному описанию. В качестве уже имеющегося примера ответа на вопросы 1-3, смотри работы А. А. Варфоломеевой.
  • Data: Набор временных рядов, который подразумевает восстановление функциональных зависимостей. Предлагается сначала использовать синтетические данные или сразу применить алгоритм к прогнозированию временных рядов 1) потребления электроэнергии 2) физической активности с последующим анализом получающихся структур.
  • References::
    • A. A. Varfolomeeva Выбор признаков при разметке библиографических списков методами структурного обучения, 2013, [102]
    • Bin Cao, Ying Li and Jianwei Yin Measuring Similarity between Graphs Based on the Levenshtein Distance, 2012, [103]
  • Basic algorithm: Конкретно к предлагаемой проблеме базового алгоритма нет. Предлагается попробовать повторить эксперимент А. А. Варфоломеевой для другого структурного описания, чтобы понять, что происходит.
  • Solution: Суперпозиция алгебраических функций задает ордерево, на вершинах которого заданы метки соответствующих алгебраических функций или переменных. Поэтому структурным описанием такой суперпозиции может являться ее DFS-code. Это строка, состоящая из меток вершин, записанных в порядке обхода дерева поиском в глубину. Зная арности соответствующих алгебраических функций, можем любой такой DFS-code восстановить за O(n) and получить обратно суперпозицию функций. На множестве подобных строковых описаний предлагается искать то строковое описание, которое будет соответствовать оптимальной модели.
  • consultant: Кулунчаков Андрей

Task 22

  • Name: Определение заимствований в тексте без указания источника
  • Task: Решается Task выявления внутренних заимствований в тексте. Требуется проверить гипотезу о том, что заданный текст написан единственным автором, and в случае ее невыполнения выделить заимствованные части текста. Заимствованием считается часть текста, предположительно написанная другим автором and содержащая характерные отличия от стиля основного автора. Требуется разработать такую стилевую функцию, которая позволяет с высокой степенью достоверности отличить стиль основного автора текста от заимствований.
  • Data: Коллекция конкурса PAN-2011.
  • References::
    1. Oberreuter, G., L’Huillier, G., Rıos, S. A., & Velásquez, J. D. (2011). Approaches for intrinsic and external plagiarism detection. Proceedings of the PAN.
  • Basic algorithm, решение: На текущий момент реализован базовый метод выявления зависимостей, основанный на анализе частотностей слов and символьных n-грамм в предложении. Для каждого текста формируется словарь, в котором каждому слову (n-грамме) поставлено в соответствие значение его встречаемости в тексте. На основе значений встречаемости формируется признаковое описание каждого сегмента-предложения. Выполняется классификация сегментов текста на основе Expertной разметки заимствований. Качество базового алгоритма составляет 0.29 по F1-мере (Pladget 0.21) на коллекции PAN-2011, в то время как качество лучшего алгоритма, принимавшего участие в соревновании 2011 года [Oberreuter], составляет 0.32 по F1-мере (Pladget 0.32). Предлагается реализовать этот алгоритм and сравнить его с базовым методом.
  • consultant: Михаил Кузнецов

Task 23

  • Name: Использование методов снижения размерности при построении признакового пространства в задаче обнаружения внутреннего плагиата
  • Task: Для более эффективного решения задачи обнаружения внутреннего плагиата использовать методы снижения размерности, сохраняющие расстояние между объектами. Требуется доработать метод tSNE [2], включив в модель информацию о разметке данных and возможность добавления ранее не рассмотренных объектов в пространство сниженной размерности. Подробнее см. [1]
  • Data: Коллекция конкурса PAN-2011.
  • References::
    1. Problem_statement_dim_reduce.pdf‎
    2. Laurens van der Maaten. Visualizing Data using t-SNE Journal of Machine Learning Research, 9 (2008) 2579-2605.
    3. Julian Brooke and Graeme Hirst. Paragraph Clustering for Intrinsic Plagiarism Detection using a Stylistic Vector-Space Model with Extrinsic Features, 2012.
  • Базовой алгоритм, решение: См. [1]
  • consultant: Мотренко Анастасия

Task 26

  • Name: Построение отображений с минимальной деформацией для сравнения изображений с эталоном.
  • Task: Применить вариационный метод построения квазиизометрических отображений для решения классической задачи геометрической морфологии and регистрации изображений - построения двумерной или трехмерной деформации для сравнения с эталоном.
  • Data: Изображения в формате bmp. На первом этапе можно задавать простые тела посредством ч/б раскраски декартовой решетки.
  • References::
    1. Michael I. Miller, Alain Trouve, Laurent Younes. ON THE METRICS AND EULER-LAGRANGE EQUATIONS OF COMPUTATIONAL ANATOMY. Annu. Rev. Biomed. Eng. 2002. 4:375–405
    2. Beg MF, Miller MI, Trouve A, Younes L. Computing large deformation metric mappings via geodesics flows of diffeomorphisms. International Journal of Computer Vision. 2005; V.61(2):139-157.
    3. Trouve A. An approach of pattern recognition through infinite dimensional group action. Research report LMENS-95-9. 1995.
    4. Garanzha VA. Maximum norm optimization of quasi-isometric mappings. Num. Linear Algebra Appl. 2002; V.9(6-7):493--510.
    5. Garanzha V.A., Kudryavtseva L.N., Utyzhnikov S.V. Untangling and optimization of spatial meshes // Journal of Computational and Applied Mathematics. -- 2014. -- October. -- V. 269 -- P. 24--41.
  • Basic algorithm: Использовать вариационный метод построения отображений, который ранее был предложен для построения пространственных отображений с заданным отображением границы [4], [5], в случае, когда задается мера близости функций, описывающих геометрические тела, например, как среднеквадратичная мера близости функций яркости.
  • Solution: Для существующего кода, который реализует вариационный метод построения двумерных отображений с минимальным искажением, необходимо дописать модуль, реализующий добавку к функционалу, являющуюся мерой близости геометрических тел. Это включает вычисление самого функционала, его градиента, and поправки к предобусловливателю.
  • Novelty: Сравнить полученный метод с методом геодезического потока диффеоморфизмов, предложенного в работах Алэна Труве (см. ссылки [1]-[3]). Оценить качество приближения and быстродействие полученного алгоритма.
  • consultant: Владимир Анатольевич Гаранжа (ВЦ РАН).

Task 27

  • Name: Кросс-язычный тематический поиск научных публикаций.
  • Task: Содание прототипа поискового сервиса, который принимает в качестве запроса текст научной статьи на русском языке and выдаёт в качестве результата поиска тематически близкие статьи на английском языке из коллекции arXiv.org.
  • Data: Коллекция текстов arXiv.org, двуязычная коллекция текстов Википедии.
  • References:: выдадим.
  • Basic algorithm: Тематическая модель, построенная по объединённой коллекции англоязычного arXiv and двуязычной англо-русской Википедии.
  • Solution: Построение регуляризованной тематической модели средствами библиотеки BigARTM. Применение стандартных средств построения инвертированных индексов.
  • Novelty: Такого сервиса в русскоязычном интернете пока нет.
  • consultant: Марина Суворова.

Task 28

  • Name: Поиск резонансных частот в растворах полимеров.
  • Task: Математически Task сводиться к поиску спектральной плотности случайных графов в окрестности точки перколяции.
  • Data: Симуляционные данные (графы Эрдеша-Реньи в окрестности точки перколяции).
  • References:: Nazarov L. I. et al. A statistical model of intra-chromosome contact maps //Soft matter. – 2015. – Т. 11. – №. 5. – С. 1019-1025.
  • Basic algorithm: Монте-Карло.
  • Novelty: В настоящее известен алгоритм оценка спектральной плотности линейных цепочек, вопрос с оценкой спектральной плотности ансамблей деревьев открытый.
  • consultant: Ольга Вальба, Yuri Maksimov, Автор задачи: Нечаев Сергей.

YEAR

Author Topic Link Consultant Reviewer Report Letters Grade Magazine
Гончаров Алексей (пример) Метрическая классификация временных рядов code,

paper, slides

Maria Popova Задаянчук Андрей BMF AILSBRCVTDSW 10 ИИП
Ахтямов Павел Отбор мультикоррелирующих признаков в задаче векторной авторегрессии code,

paper, slides

Radoslav Neichev Медведева Анна BF AI+LSB++R+CVTDEH 10
Батаев Владислав Тематическая модель классификации для диагностики заболеваний по электрокардиограмме code,

paper

Светлана Цыганова B AIL-S++B>R>C0V0T0D0E0W0H> >26.05 (7)
Иванов Илья Классификация физической активности: исследование изменения пространства параметров при дообучении and модификации моделей глубокого обучения code,

paper, slides

Oleg Bakhteev BF A+ILS+B+R++C+VT+DEW0H 10
Медведева Анна Модель порождения объектов в задаче прогнозирования временных рядов code

paper slides

Гончаров Алексей Ахтямов Павел BF AILS-BRCVTD0EWS 10
Персиянов Дмитрий Темпоральная тематическая модель коллекции пресс-релизов code

paper slides

Никита Дойков BF A+I+L+S++B+R+C+V+T0DEW0H 10
Семененко Денис Алгоритм прогнозирования структуры локально-оптимальных моделей code

paper

Кулунчаков Андрей B AI+L+SB0R0C0V0T0D0E0W0H0
Софиенко Александр Согласование логических and линейных моделей классификации в информационном анализе электрокардиосигналов code,

paper

Влада Целых B A-I-L-S-C0V0T0D0E0W0H> >26.05
Яронская Любовь Sparse Regularized Regression on Protein Complex Data code

paper slides

Александр Катруца A-I-L-SB-R-CVT--D-EW0H> >26.05
Аксенов Сергей Кросс-язычный тематический поиск научных публикаций. code

paper slides

Марина Суворова AILS0B0R0C0V0T0D0E0W0H> >26.05 (7)
Хисматуллин Тимур Анализ and классификация интерфейса комплекса ДНК-белок code

paper slides

Владимир Гаранжа F AILSBRCVT>H> >26.05 (7)

Task 6

  • Name: Sparse Regularized Regression on Protein Complex Data
  • Task: найти лучшую модель регрессии на данных связывания белковых комплексов
  • Data: признаковое описание белковых комплексов and константы связывания для них
  • References:: статьи по регрессии and сравнению методов на схожих данных
  • Basic algorithm: регуляризованная линейная регрессия (Lasso, Ridge, ..), SVR, kernel methods, etc.
  • Solution: сравнение различных алгоритмов регрессии на данных, выбор оптимальной модели and оптимизация параметров
  • Novelty: получение лучшей модели регрессии для данных связывания белковых комплексов
  • consultant: Александр Катруца, автор задачи: Sergei Grudinin.
  • Желательные навыки: готовность быстро разобраться в различных подходах к регрессии, знание или готовность к освоению С++ на среднем уровне (для более полного исследования нужно будет попробовать библиотеки на С++)

Task 8

  • Name: Классификация физической активности: исследование изменения пространства параметров при дообучении and модификации моделей глубокого обучения
  • Task: Дана модель классификации по выборке временных сегментов, записанных с акселерометра мобильного телефона. Модель представляет собой многослойную нейросеть. Требуется 1) исследовать дисперсию and матрицу ковариаций параметров нейросети при различных расписаниях оптимизации (т.е. при различных подходах к поэтапному обучению). 2) на основе полученной матрицы ковариаций параметров предложить эффективный способ модификации модели глубокого обучении.
  • Data: Выборка WISDM http://www.cis.fordham.edu/wisdm/dataset.php.
  • References::
    • Zadayanchuk A.I., Popova M.S., Strizhov V.V. Выбор оптимальной модели классификации физической активности по измерениям акселерометра http://strijov.com/papers/Zadayanchuk2015OptimalNN4.pdf
    • Попова М. С., Strizhov V.V. Построение сетей глубокого обучения для классификации временных рядов - http://strijov.com/papers/PopovaStrijov2015DeepLearning.pdf
    • Oleg BakhteevЮ., Popova M.S., Strizhov V.V. Системы and средства глубокого обучения в Taskх классификации
    • LeCun Y. Optimal Brain Damage - yann.lecun.com/exdb/publis/pdf/lecun-90b.pdf
    • Работы по пред-обучению (pre-training) and дообучению (fine-tuning)
  • Basic algorithm: Базовая модель описана в статье "Построение сетей глубокого обучения для классификации временных рядов". Алгоритм можно реализовать как с помощью библиотеки PyLearn или keras (другие библиотеки and языки программирования также допустимы).
  • Solution: Анализ матрицы ковариаций, построение add-del метода на основе полученных данных.
  • Novelty: Методика исследования ковариационной матрицы большой размерности, а также полученный алгоритм модификации модели важны and будут использоваться в дальнейшем при анализе моделей глубокого обучения.
  • consultant: Oleg Bakhteev

Task 25

  • Name: Устойчивость дискретизации электрокардиосигналов относительно частотной фильтрации.
  • Task: Технология информационного анализа электрокардиосигналов по В.М.Успенскому основана на преобразовании электрокардиограммы в символьную строку (кодограмму) and выделении информативных наборов слов — диагностических эталонов каждого заболевания. Проблема в том, что для дискретизации необходимо достаточно точно определять амплитуду R-пиков. На амплитуду может влиять частотная фильтрация сигнала, которая производится электрокардиографом на аппаратном или программном уровне. Task заключается в том, чтобы оценить, насколько сильно различные частотные фильтры (например, фильтр 50.4Гц, подавляющий воздействие электрической сети, высокочастотный фильтр) могут влиять на частоты слов в кодограмме and на качество классификации.
  • Data: электрокардиограммы в формате KDM.
  • References:: выдадим :)
  • Basic algorithm: Линейный классификатор.
  • Solution: Прямое and обратное преобразование Фурье, алгоритм детекции R-пиков на электрокардиограмме, алгоритм определения амплитуды R-пиков.
  • Novelty: Исследование устойчивости кодограмм по отношению к частотной фильтрации с различными параметрами ранее не проводилось в информационном анализе электрокардиосигналов.
  • consultant: Виктор Сафронов (Научный центр им. В.И.Кулакова)

2015

Author Topic Link Consultant Reviewer DZ-1 DZ-2 (Problem number) Letters Sum Grade
Бернштейн Юлия Методы определения характеристик фибринолиза по последовательности изображений крови in vitro Матвеев И. А. Соломатин 1 3 (8) AILSBRCVTDE 11 10
Бочкарев Артем Структурное обучение при порождении моделей [104] (no code), paper, slides Варфоломеева Анна, Бахтеев Олег Исаченко 2 2 (7) A+I++LS+BRCVT+DS 9.25 10 Гончаров Алексей Метрическая классификация временных рядов code,

paper, slides

Maria Popova Задаянчук 1.5 1 (4) AILSBRCVTDSW 12 10
Двинских Дарина Повышение качества прогнозирования с использованием групп товаров code,

paper, slides

Каневский Д. Ю. Смирнов 0.5 3 (7) AILSBRCVTDEHS 14 10
Ефимов Юрий Поиск внешней and внутренней границ радужки на изображении глаза методом парных градиентов code,

paper, slides

Матвеев И. А. Нейчев AILSBRCVTDEW 12 10
Жариков Илья Проверка соответствия электрокардиографа требованиям диагностической системы «Скринфакс» and оценка качества электрокардиограмм. code, paper, slides Ишкина Шаура Бочкарев 3.5 3 (5) AIL+SBRCVTDEHSW 14.25 10
Задаянчук Андрей Выбор оптимальной модели классификации физической активности code,

paper, slides

Maria Popova Гончаров 2 0 (17) AI-LSB+RCVTD 10 10
Златов Александр Построение иерархической модели крупной конференции code,

paper, slides

Арсентий Кузьмин Двинских 1.5 3 (14) AI+L+SBRC++V+TDESW 14.25 10
Isachenko Roman Метрическое обучение and снижение размерности пространства в Taskх кластеризации временных рядов code, paper, slides Катруца Александр Жариков 3.5 3 (14) A-I+L+S-BR+CVTDEHSW 14.25 10
Нейчев Радослав Отбор признаков в прогнозировании временных рядов c использованием экзогенных факторов code, paper, slides Катруца Александр Ефимов 1 3 (9) AI-L-SBRCVTDEHSW 13.5 10
Подкопаев Александр Прогнозирование четвертичных структур белков code,

paper, slides

Ю. В. Максимов Решетова 3.5 3 (11) AILS+B+RCVTDEHS 13.5 10
Решетова Дарья Методы многоклассовой классификации с улучшенными оценками сходимости в Taskх частичного обучения code,

paper, slides

Максимов Юрий Камзолов 2.5 3 (10) AIL++SB+RCVT++DEHS- 14 10
Смирнов Евгений Тематическая модель интересов постоянных пользователей мобильного приложения code, paper, slides Виктор Сафронов Златов 1 1 (4) AILSBRCVTWDE 11.25 10
Соломатин Иван Определение области затенения радужки классификатором локальных текстурных признаков code, paper, slides Матвеев И. А. Бернштейн 3 (9) AILSBRCVTDE 11 10
Черных Владимир Тестирование непараметрических алгоритмов прогнозирования временных рядов в условиях нестационарности code,

paper, slides

Стенина Мария Шишковец 3.5 3 (4) A+I+LSBRCVT+DE++H++ 13.75 10
Шишковец Светлана Регуляризация линейного наивного байесовского классификатора. code,

paper, slides

Михаил Усков, Константин Воронцов Черных 3.5 2 (9) A+I+L+SBR+CV+TD+E+H+S 15 10
Камзолов Дмитрий Новые алгоритмы для задачи ранжирования веб-страниц Александр Гасников, Yuri Maksimov Подкопаев AILSB+RCVT+DEHS-- 13 8
Сухарева Анжелика Классификация научных текстов по отраслям знаний code,

paper, slides

Сергей Царьков 0.5 AILSBRCVTDEH 9

Task 1

  • Name: Повышение качества прогнозирования спроса с использованием групп товаров
  • Task:

Дано:

    1. Временные ряды продаж нескольких группам товаров в одном гипермаркете. Также для каждого товара известны периоды дефицита, периоды воздействия на спрос календарных праздников and периоды проведения. маркетинговых акций. Также известен товарный классификатор: дерево групп товаров, где сами товары являются листьями.
    2. Алгоритм прогнозирования, который используется для построения прогнозов спроса по этим товарам: самоадаптивное экспоненциальное сглаживание (модель Тригга-Лича, см. [1])
    3. Функция потерь, по которой измеряется качество прогнозов: MAPE.
    4. Требования к построению прогнозов: прогнозы требуется строить понедельно на 4 недели вперёд (в начале текущей недели требуется построить прогноз суммарного спроса на следующую неделю, неделю через одну, через две, через 3).

Гипотеза: спрос на отдельные товары слишком неустойчив, чтобы выявить характерную для них сезонность. Предлагается использовать данные о группах товаров, чтобы точнее определить параметры сезонности. Замечание: возможны and другие варианты повышения качества прогнозирования за счёт работы с группами товаров. Task заключается в повышении качества прогнозирования в рамках поставленной задачи путём учёта эффекта взаимозаменяемости товаров, по сравнению с базовым алгоритмом. Результат можно считать достигнутым, если показано статистически значимое повышение качества при построении серии прогнозов (не менее 20) по каждому временному ряду скользящим контролем.

  • Data:
    1. Данные о продажах нескольких товарных групп в гипермаркете крупной торговой сети: https://drive.google.com/file/d/0B5YjPespcL83X3pHaE1aRzBUaDg/view?usp=sharing
  • References:
    1. Лукашин Ю. П. Адаптивные методы краткосрочного прогнозирования временных рядов. — М.: Финансы and статистика, 2003.
    2. http://www.machinelearning.ru/wiki/index.php?title=%D0%9C%D0%BE%D0%B4%D0%B5%D0%BB%D1%8C_%D0%A2%D1%80%D0%B8%D0%B3%D0%B3%D0%B0-%D0%9B%D0%B8%D1%87%D0%B0
    3. Nitin Patel, Mahesh Kumar, Rama Ramakrishnan. Clustering models to improve forecasts in retail merchandising. http://www.cytel.com/Papers/INFORMS_Prac_%2004.pdf
    4. Kumar M., Error-based Clustering and Its Application to Sales Forecasting in Retail Merchandising. PhD Thesis. http://books.google.ru/books/about/Error_based_Clustering_and_Its_Applicati.html?id=6252NwAACAAJ&redir_esc=y
  • Basic algorithm: Предлагется использовать модель сезонности [3] в сочетании с моделью Тригга-Лича в качестве алгоритма прогнозирования ряда без сезонности ([1] and [2]). При этом возможны 3 варианта алгоритма, в зависимости от способа оценки сезонности:
    1. Сезонность оценивается по самому ряду продаж. Для товаров с "короткой" историей оценка сезонности не выполняется.
    2. Сезонность оценивается по группе товаров, исходя из классификатора товарных групп (нижний уровень классификатора)
    3. Сезонность оценивается по кластерам, исходя из методики [3], [4].
  • Solution: Требуется реализовать объединение модели сезонности [3] and модели Тригга-Лича в качестве алгоритма прогнозирования ряда без сезонности ([1] and [2]), с 3-мя вариантами анализа сезонности, описанными выше. При построение сезонных профилей необходимо исключать периоды маркетинговых акций (иначе может быть существенное искажение сезонности). Дальше понадобится серия экспериментов с анализом качества на реальных данных. При анализе качества можно исключать периоды проведения праздников and маркетинговых акций. По итогам экспериментов, возможно, потребуется адаптация алгоритма кластеризации.
  • Novelty: Построение самоадаптивного алгоритма прогнозирования с учётом сезонности, выявляемой путём кластерного анализа.
  • consultant: Каневский Д.Ю.

Task 2

  • Name: Исследование связи онкологических заболеваний and экологической ситуации по пространственно-временной выборке
  • Task: Дана матрица с оценками экологической обстановки and данными по средней заболеваемости онкологией для каждого района Ростовской области за несколько лет. Оценки экологической обстановки содержат значительное количество шума. Оценки экологической обстановки выполнены в ранговых шкалах. Требуется построить регрессионную модель для оценки количества онкозаболеваний, которая бы учитывала экологическую обстановку в районе, соседство с другими районами and тенденцию изменения параметров на протяжении временного ряда.
  • Data: таблица с данными об экологической ситуации and количестве онкологических заболеваний в Ростовской области.
  • References:
  • Basic algorithm: Сравнений с базовым алгоритмом проводить не предполагается
  • Solution: Один из алгоритмов регрессии из обзора (3-й пункт литературы). Трансформацию порядковых признаков в линейные можно найти в пункте 4 литературы
  • Novelty: В отличие от существующих работ, в основном использующих только наборы признаков, но не географическое соседство с загрязненными районами and динамику изменения окружающей среды, в данной работе предлагается провести анализ проблемы с учетом этих факторов.
  • consultant: Oleg Bakhteev.

Task 3

  • Name: Получение оценки разреженной ковариационной матрицы для нелинейных моделей (нейросетей).
  • Task: Предложить метод оценки ковариационной матрицы параметров модели общего вида для случая линейной регрессии, логистической регрессии, общих нелинейных моделей, включая нейросети. Предложить способ учета структуры матрицы (разреженность, зависимости между коэффициентами and т.д.)
  • Data: Синтетические данные and тесты.
  • References::
  • Basic algorithm: Оценка диагональной матрицы, см. папку MLAlgorithms/HyperOptimization.
  • Solution:
  • Novelty: Предложен быстрый алгоритм получения оценок ковариационной матрицы общего вида для нелинейных моделей, исследованы свойства разреженных матриц.
  • consultant: Alexander Aduenko.

Task 4

  • Name: Отбор признаков в прогнозировании временных рядов c использованием экзогенных факторов
  • Task: постановка задачи из [106] формула (32)
  • Data: временные ряды с ценами на электроэнергию.
  • References::
    • Ключевые слова: Hourly Price Forward Curve, краткосрочное прогнозирование временных рядов, выбор признаков, метод Add-Del, (не)линейная регрессия.
    • Основные статьи:
    1. [107] - исследование влияния цен в одной стране на цену в другой and как это учесть при прогнозировании.
    2. [108] - обзор терминов and процессов, всплывающих в прогнозировании HPFC + мотивация
    3. [109] - тоже про прогнозирование цен, но тут про спотовые цены
  • Basic algorithm:
    1. LAD-Lasso estimation из [110]
    2. Статья Сандуляну про модификацию Add-Del: [111].
  • Solution: применить в качестве метода отбора признаков модифицрованный метод Add-Del.
  • Novelty: сравнение базвого and предложенного методов, анализ свойств предложенного метода.
  • consultant: Александр Катруца.

Task 5

  • Name: Разработка алгоритма распознавания изображений при поиске параметров фибринолиза.
  • Task: Задан набор снимков роста фибринового сгустка, полученных в процессе исследования тромбодинамики and [112]. Требуется разработать алгоритм поиска координат отрезка and угла наклона линии активатора по серии снимков. Протестировать разработанный алгоритм на разных видах фибринолиза and примерах, где данный процесс отсутствует.
  • Data: Массив снимков для каждого исследования формата tiff 16 бит c моментами времени от начала в сек.
  • References:
    • Описание прикладной задачи and техническое задание: по запросу.
  • Basic algorithm: Преобразование Хафа [113], обсуждается.
  • consultant: И.А. Матвеев

Task 6

  • Name: Прогнозирование четвертичных структур белков: нивелирование
  • Task: Task заключается в предсказании упаковки белковых молекул в мультимерный комплекс в приближении жестких тел. Одна из формклировок задачи записывается как невыпуклая оптимизация.

Нужно исследовать эту формулировку and предложить алгоритм решения. Suppose we have N proteins in an assembly, such that each protein i can be located in one of P positions x_{p}^{i}. N is ~ 10, P ~ 100. To each two vectors x_{i}^{p} and x_{j}^{q}, we can assign an energy function q_{0}, which is the overlap integral in the simplest approximation. Each protein position also has an associated score b_{0}. Thus, the optimal packing problem can be formulated as 
\begin{align}
x^{T}Q_{0}x+b_{0}^{T}x	&\rightarrow&	\textrm{min}\\
\textrm{w.r.t}.		&&\left\Vert x^{k}\right\Vert _{\infty}=1\;\forall k \\
	&&	x_{i}^{k}\geq0\;\forall i,k
\end{align}

  • Data: Собираются при помощи одного из стандартных комплексов решенных при помощи электронной микроскопии. Значения энергий and интегралов перекрытия вычисляются при помощи модификации одного из стандартных пакетов, например, HermiteFit. Данные генерируются за ~ 1 минуту, модификация кода and подготовка данных займет ~ 1 неделю.
  • References: Ю.Е. Нестеров Введение в выпуклую оптимизацию (доступна на сайте PreMoLab)
  • Замечания по коду: Замечания по программной реализации
  • Basic algorithm: Хочется попробовать выпуклые релаксации.
  • Novelty: Выпуклые релаксации не применялись ранее в таких Taskх на данных белков
  • consultant: Ю.В. Максимов

Task 7

  • Name: Метрическое обучение and снижение размерности пространства в Taskх классификации временных рядов
  • Task: постановка задачи из базовой статьи, возможна некоторая модификация функции ошибки из-за специфики временных рядов
  • Data: временные ряды цен на электроэнергию
  • References::
    1. [114] - базовая статья
    2. [115] - отличный обзор методов Metric Learning
    3. [116] - ещё обзор
  • Basic algorithm: алгоритм Франка-Вольфа (условного градиентного спуска)
  • Solution: применить прореживание целевой матрицы с помощью метода Belsley для удаления мультиколлинерности
  • Novelty: применение методов Metric Learning в задаче кластеризации временных рядов, анализ свойств предложенного метода
  • consultant: Александр Катруца

Task 8

  • Name: Структурное обучение при порождении моделей
  • Task: Решается Task поиска ранжирующей функции в Taskх информационного поиска. Поиск проводится среди непараметрических функций (структур), сгенерированныx грамматикой вида G: g---> B(g, g) | U(g) | S, где B - набор бинарных операций {+, -, *, /}, U - унарных {-(), sqrt, log, exp}, S - переменных and параметров {x, y, k}. Предлагается решать задачу порождения ранжирующей модели в два этапа, используя в качестве обучающей выборки историю восстановления структуры модели.
  • Data: Подколлекции TREC.
  • Описание коллекции данных, используемых для оценки функций, and процедуры оценки. [117]
  • References:
    • Jaakkola T. Scaled structured prediction.
    • Tommi Jaakkola “Scaling structured prediction”
    • Найти все работы учеников TJ по данной тематике.
    • Варфоломеева А.А. Дипломная работа бакалавра в MLAlgorithms/BSThesis/Varfolomeeva
  • Basic algorithm: Парантапа, BM25 - модели для сравнения.
  • Solution: Предлагается кластеризовать коллекцию and породить модели для кластеров документов. Затем методом структурного обучения найти модели, обобщающие объединения кластеров вплоть до самой коллекции.
  • Novelty: Обнаружены ранжирующие функции, не уступающие по качеству используемым на практике.
  • * consultant: Анна Варфоломеева, Oleg Bakhteev

Task 9

  • Name: Проверка соответствия электрокардиографа требованиям диагностической системы «Скринфакс» and оценка качества электрокардиограмм.
  • Task: Решается Task проверки соответствия произвольного электрокардиографа требованиям системы диагностики «Скринфакс» [1—4] на основе сравнения электрокардиограмм (ЭКГ) одних and тех же пациентов, зарегистрированных обоими приборами по схеме АВАВ, где А – первый прибор, В – второй. Также решается Task автоматического выявления некачественных электрокардиограмм, не удовлетворяющих требованиям диагностической системы.
  • Data: Выборка состоит из записей со значениями ЭКГ, зарегистрированными прибором, для которого проводится проверка, and прибором, используемым в системе диагностики «Скринфакс» (данные с подробным описанием формата записей будут предоставлены выбравшему задачу). Для тестирования алгоритмов обнаружения R-пиков and оценивания уровня шума можно использовать http://www.physionet.org/physiobank/database/ptbdb/
  • References:
    1. Информационный портал Диагностической системы «Скринфакс». URL: http://skrinfax.ru/автор-метода/
    2. Технология информационного анализа электрокардиосигналов
    3. Успенский В.М. Информационная функция сердца. Теория and практика диагностики заболеваний внутренних органов методом информационного анализа электрокардиосигналов. М.: Экономика and информатика, 2008. 116с.
    4. Успенский В.М. Информационная функция сердца. // Клиническая медицина. 2008. Т.86. №5. С.4–13.
    5. Naseri H., Homaeinezhad M.R. Electrocardiogram signal quality assessment using an artificially reconstructed target lead // Computer Methods in Biomechanics and Biomedical Engineering. 2015. Vol.18, No. 10. Pp. 1126-1141.
    6. Zidelmal Z., Amirou A., Ould-Abdeslam D., Moukadem A., Dieterlen A. QRS detection using S-Transform and Shannon energy. // Comput Methods Programs Biomed. 2014. Vol. 116, No. 1. Pp. 1-9. URL: https://yadi.sk/i/-kD00y1VepB3q
    7. Sarfraz M., Li F. F., Khan A. A. Independent Component Analysis Methods to Improve Electrocardiogram Patterns Recognition in the Presence of Non-Trivial Artifacts // Journal of Medical and Bioengineering. 2015. Vol. 4, No. 3. Pp. 221—226. URL: https://yadi.sk/i/-kD00y1VepB3q
    8. Meziane N. et al. Simultaneous comparison of 1 gel with 4 dry electrode types for electrocardiography // Physiol. Meas. 2015. Vol. 36, No. 513.
    9. Allana S., Aversa J., Varghese C., et al. Poor quality electrocardiograms negatively affect the diagnostic accuracy of ST segment elevation myocardial infarction. // J Am Coll Cardiol. 2014. Vol. 63, No. 12_S. doi:10.1016/S0735-1097(14)60172-8.
  • Basic algorithm: Оценивание качества ЭКГ – [4], обнаружение R-пиков – [5], оценивание уровня шума в данных – [6].
  • Solution: Задачу проверки соответствия произвольного электрокардиографа требованиям системы диагностики «Скринфакс» предлагается решать путем построения перестановочных статистических тестов по сравнению значений RR-интервалов and R-амплитуд and выявленных кодовых последовательностей (вычисляются по амплитудам and интервалам) для каждого заболевания. Здесь возникает Task обнаружения R-пиков. В задаче обнаружения некачественных электрокардиограмм возникает Task оценивания уровня шума. Кроме того, необходимо научиться отсеивать ЭКГ с неинформативными значениями амплитуд или большим разбросом значений интервалов, поскольку методика анализа электрокардиосигналов неприменима к диагностике аритмии.
  • Novelty: Задачу проверки соответствия электрокардиографа требованиям диагностической системы можно рассматривать как задачу сравнения приборов регистрации ЭКГ, возникающей, например, при сравнении различных видов электродов, and в качестве критериев выбираются уровень шума в значениях электрокардиосигналов, наличие дрейфа базовой линии and некоторые другие признаки [7].
  • consultant: Ишкина Шаура

Task 10

  • Name: Simplification of the IR models structure
  • Task: To achieve the acceptable quality of the information retrieval models, modern search engines use models of very complex structure. In current research we propose to simplify the model structure and make it interpretable without decreasing the model accuracy. To do this, we follow the idea from (Goswami et al., 2014) of constructing the set of nonlinear IR functions of simple structure and admissible accuracy. However, each of this functions is expected to have lower accuracy while comparing with the best IR model of complex structure. Thus, we propose to approximate this complex model with the linear combination of simple nonlinear functions and expect to obtain the comparable quality of solution.
  • Data: TREC collections.
  • References:
    • P. Goswami et Al. Exploring the Space of IR Functions // Advances in Information Retrieval. Lecture Notes in Computer Science. 8416:372-384, 2014.
    • Problem statement
  • Basic algorithm: Gradient boosting machine for constructing a model of high complexity. Exaustive search of superpositions from a set of elementary functions for approximation and simplification.
  • Solution: The optimal functions for the linear combination can be found by the greedy algorithm.
  • Novelty: A new ranking function of simple structure competitive with traditional ones.
  • consultant: Mikhail Kuznetsov.

Task 11

  • Name: Тестирование непараметрических алгоритмов прогнозирования временных рядов в условиях нестационарности
  • Task: Одним из ключевых предположений о распределении данных при непараметрическом является предположение о стационарности временного ряда. Адекватность прогнозов при невыполнении этого требования не гарантируется. Требуется разработать метод определения выполнения условия локальной стационарности временного ряда исследовать применимость основных алгоритмов непараметрического прогнозирования в отсутствии стационарности. Рассмотреть основные методы непараметрической регрессии, такие как ядерное сглаживание, сглаживание сплайнами, авторегрессия, скользящее среднее and др.
  • Data: Данные о грузовых железнодорожных перевозках (РЖД)
  • References::
    • Вальков А.С., Кожанов Е.М., Медведникова М.М., Хусаинов Ф.И. Непараметрическое прогнозирование загруженности системы железнодорожных узлов по историческим данным // Машинное обучение and анализ данных. — 2012. — № 4.
    • Dickey D. A. and Fuller W. A. Distribution of the Estimators for Autoregressive Time Series with a Unit Root / Journal of the American Statistical Association. — 74. — 1979. — p. 427—-431.
  • Basic algorithm: ARMA, Hist.
  • Solution: В качестве базового метода для проверки рядов на нестационарность использовать тест Дики-Фуллера. Предлагается также рассмотреть такие источники нестационарности, как тренд and сезонность.
  • Novelty: Разработан and обоснован метод определения выполнения условия локальной стационарности временного ряда.
  • consultant: Стенина Мария

Task 12

  • Name: Обучение метрик в Taskх полного and частичного обучения
  • Task: состоит в программной реализации комплекса методов выпуклой and DC-оптимизации для задачи выбора оптимальной метрики в Taskх распознавания. Иными словами, в построении метрики такой, что классификация методом ближайших соседей дает высокую точность.
  • Data: Birds and Fungus коллекции ImageNet с извлеченными Deep features(предоставляется consultantом). Первичные тесты можно проводить на данных представленных здесь
  • References: Список литературы and описание подробное задачи приведены в файле
  • Замечания к коду: Замечания по программной реализации
  • Basic algorithm: 1) выпуклая релаксация задачи решаемая внутренней точкой через CVX 2) SVM на модифицированной выборке, состоящей из пар объектов
  • consultant: Ю.В. Максимов

Task 13

  • Name: Построение иерархической тематической модели крупной конференции
  • Task: Ежегодно, программный комитет крупной конференции EURO (более 2000 докладов) сталкивается с задачей построения иерархической модели тезисов конференции. В силу того, что структура конференции слабо меняется из года в год, предлагается построить тематическую модель будущей конференции, используя экспертные модели конференций прошлых лет. При этом возникают следующие подзадачи:
  1. Классификация тезисов новой конференции.
  2. Прогнозирование изменений структуры конференции.
  • Data: Тезисы and экспертные модели конференций EURO 2010, 2012, 2013.
  • References:: Alexander A. Aduenko, Arsentii A. Kuzmin, Vadim V. Strijov. Adaptive thematic forecasting of major conference proceedings текст статьи
  • Basic algorithm:
  • Solution: Для решения подзадач
  1. предлагается объединить экспертные модели конференций прошлых лет в одну, and для каждого тезиса новой конференции найти в полученной объединенной модели наиболее подходящий кластер, например, с помощью взвешенной косинусной меры близости.
  2. исследовать изменения в структуре конференций из года в год and определить порог значений внутрикластерного сходства, при котором для некоторого набора тезисов Experts создают новый кластер, а не добавляют эти тезисы в уже существующие кластеры.
  • Novelty: Взвешенная косинусная мера близости, учитывающая иерархичность структуры кластеров. Прогнозирование изменений иерархической структуры/тематики конференции
  • consultant: Арсентий Кузьмин

Task 14

  • Name: Регуляризация линейного наивного байесовского классификатора.
  • Task: Построение линейного классификатора является одной из классических and самых хорошо изученных задач машинного обучения. Линейный наивный байесовский (LNB) классификатор имеет сильное преимущество — он строится за время, линейное по длине выборки, and сильное ограничение — при его выводе предполагается, что признаки независимы. На некоторых данных LNB работает удивительно хорошо, несмотря на явное нарушение гипотезы о независимости признаков. Линейная машина опорных векторов (SVM) считается очень успешным методом, но на больших выборках работает долго. Оба эти метода работают в одном and том же пространстве линейных классификаторов. Идея исследования состоит в том, чтобы путём незначительных поправок LNB приблизить его к SVM по качеству, но без утраты эффективности.
  • Data: Один из трёх наборов данных, по выбору: классификация текстов на научные and ненаучные, классификация авторефератов по областям науки, классификация кодограмм ЭКГ на больных and здоровых.
  • References::
    1. Larsen (2005) Generalized Naive Bayes Classifiers.
    2. Abraham, Simha, Iyengar (2009) Effective Discretization and Hybrid feature selection using Naïve Bayesian classifier for Medical datamining.
    3. Lutu (2013) Fast Feature Selection for Naive Bayes Classification in Data Stream Mining.
    4. Zaidi, Carman, Cerquides, Webb (2014) Naive-Bayes Inspired Effective Pre-Conditioner for Speeding-up Logistic Regression.
    5. + спросить у Vorontsov K. V.а.
  • Basic algorithm: любые готовые реализации LNB and SVM. Плюс наивный отбор признаков для LNB.
  • Solution: Выводим поправочные формулы для весов LNB при использовании margin-maximization регуляризатора, аналогичного SVM. Строим итерационный процесс, в котором на каждом шаге вычисляется поправка, ещё немного приближающая LNB к SVM. Строятся ROC-кривые and зависимости Hold-out AUC от номера итерации.
  • Novelty: Сообщество ML до сих пор не осознало, что любой линейный классификатор эквивалентен какому-то наивному байесовскому.
  • consultant: Михаил Усков. Гиперconsultant: Vorontsov K. V..

Task 15

  • Name: Тематическая модель интересов постоянных пользователей мобильного приложения.
  • Task: Мобильное приложение для изучения английских слов предлагает пользователю слова одно за другим. Пользователь может либо добавить слово к изучаемым, либо откинуть. Чтобы начать учить слова, нужно набрать, как минимум, 10 слов. Требуется построить вероятностную модель генерации слов, адаптирующуюся под интересы пользователя.
  • Data: Для каждого пользователя имеются списки добавленных and откинутых слов. Кроме того, предполагается использовать большую внешнюю коллекцию текстов, например, Википедию, для устойчивого определения тематики.
  • References::
    1. Vorontsov K. V., Potapenko A. A. Additive Regularization of Topic Models // Machine Learning. Special Issue “Data Analysis and Intelligent Optimization with Applications”. 2014. Русский перевод
    2. + попросить у Vorontsov K. V.а
  • Basic algorithm: Алгоритм случайного отбора слов.
  • Solution: Тематическая модель для каждого пользователя определяет тематический профиль его интересов p(t|u). Для генерации слов используются распределения слов из распределений p(w|t) тем данного пользователя. Строятся зависимости функционалов качества тематической модели от номера итерации. Основной функционал качества — способность модели предсказывать, какие слова пользователь оставит, а какие откинет.
  • Novelty: Особенностью модели является наличие откинутых слов. Разработанные методы могут быть также применены в рекомендательных системах с лайками and дизлайками.
  • consultant: Виктор Сафронов. Гиперconsultant: Vorontsov K. V..

2015

Author Topic Link Consultant Reviewer DZ-1 DZ-2 (Problem number) Letters Sum Grade
Бернштейн Юлия Методы определения характеристик фибринолиза по последовательности изображений крови in vitro Матвеев И. А. Соломатин 1 3 (8) AILSBRCVTDE 11 10
Бочкарев Артем Структурное обучение при порождении моделей [118] (no code), paper, slides Варфоломеева Анна, Бахтеев Олег Исаченко 2 2 (7) A+I++LS+BRCVT+DS 9.25 10
Гончаров Алексей Метрическая классификация временных рядов code,

paper, slides

Maria Popova Задаянчук 1.5 1 (4) AILSBRCVTDSW 12 10
Двинских Дарина Повышение качества прогнозирования с использованием групп товаров code,

paper, slides

Каневский Д. Ю. Смирнов 0.5 3 (7) AILSBRCVTDEHS 14 10
Ефимов Юрий Поиск внешней and внутренней границ радужки на изображении глаза методом парных градиентов code,

paper, slides

Матвеев И. А. Нейчев AILSBRCVTDEW 12 10
Жариков Илья Проверка соответствия электрокардиографа требованиям диагностической системы «Скринфакс» and оценка качества электрокардиограмм. code, paper, slides Ишкина Шаура Бочкарев 3.5 3 (5) AIL+SBRCVTDEHSW 14.25 10
Задаянчук Андрей Выбор оптимальной модели классификации физической активности code,

paper, slides

Maria Popova Гончаров 2 0 (17) AI-LSB+RCVTD 10 10
Златов Александр Построение иерархической модели крупной конференции code,

paper, slides

Арсентий Кузьмин Двинских 1.5 3 (14) AI+L+SBRC++V+TDESW 14.25 10
Isachenko Roman Метрическое обучение and снижение размерности пространства в Taskх кластеризации временных рядов code, paper, slides Катруца Александр Жариков 3.5 3 (14) A-I+L+S-BR+CVTDEHSW 14.25 10
Нейчев Радослав Отбор признаков в прогнозировании временных рядов c использованием экзогенных факторов code, paper, slides Катруца Александр Ефимов 1 3 (9) AI-L-SBRCVTDEHSW 13.5 10
Подкопаев Александр Прогнозирование четвертичных структур белков code,

paper, slides

Ю. В. Максимов Решетова 3.5 3 (11) AILS+B+RCVTDEHS 13.5 10
Решетова Дарья Методы многоклассовой классификации с улучшенными оценками сходимости в Taskх частичного обучения code,

paper, slides

Максимов Юрий Камзолов 2.5 3 (10) AIL++SB+RCVT++DEHS- 14 10
Смирнов Евгений Тематическая модель интересов постоянных пользователей мобильного приложения code, paper, slides Виктор Сафронов Златов 1 1 (4) AILSBRCVTWDE 11.25 10
Соломатин Иван Определение области затенения радужки классификатором локальных текстурных признаков code, paper, slides Матвеев И. А. Бернштейн 3 (9) AILSBRCVTDE 11 10
Черных Владимир Тестирование непараметрических алгоритмов прогнозирования временных рядов в условиях нестационарности code,

paper, slides

Стенина Мария Шишковец 3.5 3 (4) A+I+LSBRCVT+DE++H++ 13.75 10
Шишковец Светлана Регуляризация линейного наивного байесовского классификатора. code,

paper, slides

Михаил Усков, Константин Воронцов Черных 3.5 2 (9) A+I+L+SBR+CV+TD+E+H+S 15 10
Камзолов Дмитрий Новые алгоритмы для задачи ранжирования веб-страниц Александр Гасников, Yuri Maksimov Подкопаев AILSB+RCVT+DEHS-- 13 8
Сухарева Анжелика Классификация научных текстов по отраслям знаний code,

paper, slides

Сергей Царьков 0.5 AILSBRCVTDEH 9


Task 1

  • Name: Повышение качества прогнозирования спроса с использованием групп товаров
  • Task:

Дано:

    1. Временные ряды продаж нескольких группам товаров в одном гипермаркете. Также для каждого товара известны периоды дефицита, периоды воздействия на спрос календарных праздников and периоды проведения. маркетинговых акций. Также известен товарный классификатор: дерево групп товаров, где сами товары являются листьями.
    2. Алгоритм прогнозирования, который используется для построения прогнозов спроса по этим товарам: самоадаптивное экспоненциальное сглаживание (модель Тригга-Лича, см. [1])
    3. Функция потерь, по которой измеряется качество прогнозов: MAPE.
    4. Требования к построению прогнозов: прогнозы требуется строить понедельно на 4 недели вперёд (в начале текущей недели требуется построить прогноз суммарного спроса на следующую неделю, неделю через одну, через две, через 3).

Гипотеза: спрос на отдельные товары слишком неустойчив, чтобы выявить характерную для них сезонность. Предлагается использовать данные о группах товаров, чтобы точнее определить параметры сезонности. Замечание: возможны and другие варианты повышения качества прогнозирования за счёт работы с группами товаров. Task заключается в повышении качества прогнозирования в рамках поставленной задачи путём учёта эффекта взаимозаменяемости товаров, по сравнению с базовым алгоритмом. Результат можно считать достигнутым, если показано статистически значимое повышение качества при построении серии прогнозов (не менее 20) по каждому временному ряду скользящим контролем.

  • Data:
    1. Данные о продажах нескольких товарных групп в гипермаркете крупной торговой сети: https://drive.google.com/file/d/0B5YjPespcL83X3pHaE1aRzBUaDg/view?usp=sharing
  • References:
    1. Лукашин Ю. П. Адаптивные методы краткосрочного прогнозирования временных рядов. — М.: Финансы and статистика, 2003.
    2. http://www.machinelearning.ru/wiki/index.php?title=%D0%9C%D0%BE%D0%B4%D0%B5%D0%BB%D1%8C_%D0%A2%D1%80%D0%B8%D0%B3%D0%B3%D0%B0-%D0%9B%D0%B8%D1%87%D0%B0
    3. Nitin Patel, Mahesh Kumar, Rama Ramakrishnan. Clustering models to improve forecasts in retail merchandising. http://www.cytel.com/Papers/INFORMS_Prac_%2004.pdf
    4. Kumar M., Error-based Clustering and Its Application to Sales Forecasting in Retail Merchandising. PhD Thesis. http://books.google.ru/books/about/Error_based_Clustering_and_Its_Applicati.html?id=6252NwAACAAJ&redir_esc=y
  • Basic algorithm: Предлагется использовать модель сезонности [3] в сочетании с моделью Тригга-Лича в качестве алгоритма прогнозирования ряда без сезонности ([1] and [2]). При этом возможны 3 варианта алгоритма, в зависимости от способа оценки сезонности:
    1. Сезонность оценивается по самому ряду продаж. Для товаров с "короткой" историей оценка сезонности не выполняется.
    2. Сезонность оценивается по группе товаров, исходя из классификатора товарных групп (нижний уровень классификатора)
    3. Сезонность оценивается по кластерам, исходя из методики [3], [4].
  • Solution: Требуется реализовать объединение модели сезонности [3] and модели Тригга-Лича в качестве алгоритма прогнозирования ряда без сезонности ([1] and [2]), с 3-мя вариантами анализа сезонности, описанными выше. При построение сезонных профилей необходимо исключать периоды маркетинговых акций (иначе может быть существенное искажение сезонности). Дальше понадобится серия экспериментов с анализом качества на реальных данных. При анализе качества можно исключать периоды проведения праздников and маркетинговых акций. По итогам экспериментов, возможно, потребуется адаптация алгоритма кластеризации.
  • Novelty: Построение самоадаптивного алгоритма прогнозирования с учётом сезонности, выявляемой путём кластерного анализа.
  • consultant: Каневский Д.Ю.

Task 2

  • Name: Исследование связи онкологических заболеваний and экологической ситуации по пространственно-временной выборке
  • Task: Дана матрица с оценками экологической обстановки and данными по средней заболеваемости онкологией для каждого района Ростовской области за несколько лет. Оценки экологической обстановки содержат значительное количество шума. Оценки экологической обстановки выполнены в ранговых шкалах. Требуется построить регрессионную модель для оценки количества онкозаболеваний, которая бы учитывала экологическую обстановку в районе, соседство с другими районами and тенденцию изменения параметров на протяжении временного ряда.
  • Data: таблица с данными об экологической ситуации and количестве онкологических заболеваний в Ростовской области.
  • References:
  • Basic algorithm: Сравнений с базовым алгоритмом проводить не предполагается
  • Solution: Один из алгоритмов регрессии из обзора (3-й пункт литературы). Трансформацию порядковых признаков в линейные можно найти в пункте 4 литературы
  • Novelty: В отличие от существующих работ, в основном использующих только наборы признаков, но не географическое соседство с загрязненными районами and динамику изменения окружающей среды, в данной работе предлагается провести анализ проблемы с учетом этих факторов.
  • consultant: Oleg Bakhteev.

Task 3

  • Name: Получение оценки разреженной ковариационной матрицы для нелинейных моделей (нейросетей).
  • Task: Предложить метод оценки ковариационной матрицы параметров модели общего вида для случая линейной регрессии, логистической регрессии, общих нелинейных моделей, включая нейросети. Предложить способ учета структуры матрицы (разреженность, зависимости между коэффициентами and т.д.)
  • Data: Синтетические данные and тесты.
  • References::
  • Basic algorithm: Оценка диагональной матрицы, см. папку MLAlgorithms/HyperOptimization.
  • Solution:
  • Novelty: Предложен быстрый алгоритм получения оценок ковариационной матрицы общего вида для нелинейных моделей, исследованы свойства разреженных матриц.
  • consultant: Alexander Aduenko.

Task 6

  • Name: Прогнозирование четвертичных структур белков: нивелирование
  • Task: Task заключается в предсказании упаковки белковых молекул в мультимерный комплекс в приближении жестких тел. Одна из формклировок задачи записывается как невыпуклая оптимизация.

Нужно исследовать эту формулировку and предложить алгоритм решения.

Suppose we have N proteins in an assembly, such that each protein i can be located in one of P positions x_{p}^{i}. N is ~ 10, P ~ 100. To each two vectors x_{i}^{p} and x_{j}^{q}, we can assign an energy function q_{0}, which is the overlap integral in the simplest approximation. Each protein position also has an associated score b_{0}. Thus, the optimal packing problem can be formulated as


\begin{align}
x^{T}Q_{0}x+b_{0}^{T}x	&\rightarrow&	\textrm{min}\\
\textrm{w.r.t}.		&&\left\Vert x^{k}\right\Vert _{\infty}=1\;\forall k \\
	&&	x_{i}^{k}\geq0\;\forall i,k
\end{align}

  • Data: Собираются при помощи одного из стандартных комплексов решенных при помощи электронной микроскопии. Значения энергий and интегралов перекрытия вычисляются при помощи модификации одного из стандартных пакетов, например, HermiteFit. Данные генерируются за ~ 1 минуту, модификация кода and подготовка данных займет ~ 1 неделю.
  • References: Ю.Е. Нестеров Введение в выпуклую оптимизацию (доступна на сайте PreMoLab)
  • Замечания по коду: Замечания по программной реализации
  • Basic algorithm: Хочется попробовать выпуклые релаксации.
  • Novelty: Выпуклые релаксации не применялись ранее в таких Taskх на данных белков
  • consultant: Ю.В. Максимов

Task 8

  • Name: Структурное обучение при порождении моделей
  • Task: Решается Task поиска ранжирующей функции в Taskх информационного поиска. Поиск проводится среди непараметрических функций (структур), сгенерированныx грамматикой вида G: g---> B(g, g) | U(g) | S, где B - набор бинарных операций {+, -, *, /}, U - унарных {-(), sqrt, log, exp}, S - переменных and параметров {x, y, k}. Предлагается решать задачу порождения ранжирующей модели в два этапа, используя в качестве обучающей выборки историю восстановления структуры модели.
  • Data: Подколлекции TREC.
  • Описание коллекции данных, используемых для оценки функций, and процедуры оценки. [120]
  • References:
    • Jaakkola T. Scaled structured prediction.
    • Tommi Jaakkola “Scaling structured prediction”
    • Найти все работы учеников TJ по данной тематике.
    • Варфоломеева А.А. Дипломная работа бакалавра в MLAlgorithms/BSThesis/Varfolomeeva
  • Basic algorithm: Парантапа, BM25 - модели для сравнения.
  • Solution: Предлагается кластеризовать коллекцию and породить модели для кластеров документов. Затем методом структурного обучения найти модели, обобщающие объединения кластеров вплоть до самой коллекции.
  • Novelty: Обнаружены ранжирующие функции, не уступающие по качеству используемым на практике.
  • * consultant: Анна Варфоломеева, Oleg Bakhteev

Task 9

  • Name: Проверка соответствия электрокардиографа требованиям диагностической системы «Скринфакс» and оценка качества электрокардиограмм.
  • Task: Решается Task проверки соответствия произвольного электрокардиографа требованиям системы диагностики «Скринфакс» [1—4] на основе сравнения электрокардиограмм (ЭКГ) одних and тех же пациентов, зарегистрированных обоими приборами по схеме АВАВ, где А – первый прибор, В – второй. Также решается Task автоматического выявления некачественных электрокардиограмм, не удовлетворяющих требованиям диагностической системы.
  • Data: Выборка состоит из записей со значениями ЭКГ, зарегистрированными прибором, для которого проводится проверка, and прибором, используемым в системе диагностики «Скринфакс» (данные с подробным описанием формата записей будут предоставлены выбравшему задачу). Для тестирования алгоритмов обнаружения R-пиков and оценивания уровня шума можно использовать http://www.physionet.org/physiobank/database/ptbdb/
  • References:
    1. Информационный портал Диагностической системы «Скринфакс». URL: http://skrinfax.ru/автор-метода/
    2. Технология информационного анализа электрокардиосигналов
    3. Успенский В.М. Информационная функция сердца. Теория and практика диагностики заболеваний внутренних органов методом информационного анализа электрокардиосигналов. М.: Экономика and информатика, 2008. 116с.
    4. Успенский В.М. Информационная функция сердца. // Клиническая медицина. 2008. Т.86. №5. С.4–13.
    5. Naseri H., Homaeinezhad M.R. Electrocardiogram signal quality assessment using an artificially reconstructed target lead // Computer Methods in Biomechanics and Biomedical Engineering. 2015. Vol.18, No. 10. Pp. 1126-1141.
    6. Zidelmal Z., Amirou A., Ould-Abdeslam D., Moukadem A., Dieterlen A. QRS detection using S-Transform and Shannon energy. // Comput Methods Programs Biomed. 2014. Vol. 116, No. 1. Pp. 1-9. URL: https://yadi.sk/i/-kD00y1VepB3q
    7. Sarfraz M., Li F. F., Khan A. A. Independent Component Analysis Methods to Improve Electrocardiogram Patterns Recognition in the Presence of Non-Trivial Artifacts // Journal of Medical and Bioengineering. 2015. Vol. 4, No. 3. Pp. 221—226. URL: https://yadi.sk/i/-kD00y1VepB3q
    8. Meziane N. et al. Simultaneous comparison of 1 gel with 4 dry electrode types for electrocardiography // Physiol. Meas. 2015. Vol. 36, No. 513.
    9. Allana S., Aversa J., Varghese C., et al. Poor quality electrocardiograms negatively affect the diagnostic accuracy of ST segment elevation myocardial infarction. // J Am Coll Cardiol. 2014. Vol. 63, No. 12_S. doi:10.1016/S0735-1097(14)60172-8.
  • Basic algorithm: Оценивание качества ЭКГ – [4], обнаружение R-пиков – [5], оценивание уровня шума в данных – [6].
  • Solution: Задачу проверки соответствия произвольного электрокардиографа требованиям системы диагностики «Скринфакс» предлагается решать путем построения перестановочных статистических тестов по сравнению значений RR-интервалов and R-амплитуд and выявленных кодовых последовательностей (вычисляются по амплитудам and интервалам) для каждого заболевания. Здесь возникает Task обнаружения R-пиков. В задаче обнаружения некачественных электрокардиограмм возникает Task оценивания уровня шума. Кроме того, необходимо научиться отсеивать ЭКГ с неинформативными значениями амплитуд или большим разбросом значений интервалов, поскольку методика анализа электрокардиосигналов неприменима к диагностике аритмии.
  • Novelty: Задачу проверки соответствия электрокардиографа требованиям диагностической системы можно рассматривать как задачу сравнения приборов регистрации ЭКГ, возникающей, например, при сравнении различных видов электродов, and в качестве критериев выбираются уровень шума в значениях электрокардиосигналов, наличие дрейфа базовой линии and некоторые другие признаки [7].
  • consultant: Ишкина Шаура

Task 12

  • Name: Обучение метрик в Taskх полного and частичного обучения
  • Task: состоит в программной реализации комплекса методов выпуклой and DC-оптимизации для задачи выбора оптимальной метрики в Taskх распознавания. Иными словами, в построении метрики такой, что классификация методом ближайших соседей дает высокую точность.
  • Data: Birds and Fungus коллекции ImageNet с извлеченными Deep features(предоставляется consultantом). Первичные тесты можно проводить на данных представленных здесь
  • References: Список литературы and описание подробное задачи приведены в файле
  • Замечания к коду: Замечания по программной реализации
  • Basic algorithm: 1) выпуклая релаксация задачи решаемая внутренней точкой через CVX 2) SVM на модифицированной выборке, состоящей из пар объектов
  • consultant: Ю.В. Максимов

Plans for next year:

  1. Expand the matlab test and give it along with the trial programming as the first task.

2014

Author Topic Link Consultant DZ-1 Letters Sum Grade
Газизуллина Римма Прогнозирование объемов железнодорожных грузоперевозок по парам веток [121], pdf Стенина Мария \frac{15}{15}+\frac{10}{16} [MF]TAI+L+SBR+CV+T>DEH(J) 16 10
Гринчук Алексей Выбор оптимальных структур прогностических моделей методами структурного обучения [122], pdf Варфоломеева Анна \frac{7}{15}+\frac{2}{16} [F]TA+I+LSBR+СV+T+D+E(F) 14,5 9
Гущин Александр Последовательное порождение существенно нелинейных моделей в Taskх ранжирования документов [123], pdf Кузнецов Михаил \frac{5}{15}+\frac{2}{16} [F]TAI+L+SBRCVTDEHS(F) 15,5 9
Ефимова Ирина Дифференциальная диагностика заболеваний по электрокардиограмме [124], pdf Целых Влада \frac{15}{15}+\frac{12}{16} [MF]T+A+I+L+SB++R+CV+TDE+H(J ed) 17,25 10
Жуков Андрей Построение рейтингов вузов: панельный анализ and оценка устойчивости [125], pdf Кузнецов Михаил \frac{8}{15}+0 [F]TAIL+SBRCVTDEHS(F) 15,25 9
Игнатов Андрей Обучение многообразий для прогнозирования наборов квазипериодических временных рядов [126], pdf Ивкин Никита 0+\frac{7}{16} [MF]TA+I+L+S+B+R+C+VTD>E+HS (J if ed) 18 10
Карасиков Михаил Поиск эффективных методов снижения размерности при решении задач мультиклассовой классификации путем её сведения к решению бинарных задач [127], pdf Ю.В. Максимов 0+0 [MF]TAI+L+SBRC+V+TDESH(J) 15 10
Кулунчаков Андрей Обнаружение изоморфных структур существенно нелинейных прогностических моделей [128], pdf Сологуб Роман, Кузнецов Михаил \frac{10}{15}+\frac{14}{16} [F]T+AI+L+S+BR+CVT++D+EHS(J ed-ed) 17 10
Липатова Анна Обнаружение закономерностей в наборе временных рядов методами структурного обучения [129], pdf А. П. Мотренко \frac{8}{15}+\frac{6}{16} [MF]TA+I+LSBR-CVTDE (J when ed) 14,25 10
Макарова Анастасия Использование нелинейного прогнозирования при поиске зависимостей между временными рядами [130], pdf Мотренко Анастасия 0+0 [F]TAI-LSB+R-CVTD>E>(F) 12,75 9
Плавин Александр Оптимизация числа тем в вероятностных тематических моделях с помощью регуляризатора строкового разреживания [131], pdf Потапенко Анна \frac{13}{15}+\frac{14}{16} [F]T+A+I+L+S+BR++CVTD+>>(?) 14 10
Попова Мария Выбор оптимальной модели прогнозирования физической активности человека по измерениям акселерометра [132], pdf Токмакова Александра \frac{11}{15}+\frac{6}{16} [MF]T+AI+L++SB++R+CV+TD+(JV ed) 15,25 10
Швец Михаил Интерпретация мультимоделей при обработке социологических данных [133], pdf Адуенко Александр \frac{11}{15}+\frac{4}{16} [M+F]T+A+I+L+S+B+R+CVTD+E(F) 16,25 9
Шинкевич Михаил Влияние регуляризаторов разреживания, сглаживания and декорреляции на устойчивость вероятностной тематической модели [134], pdf Дударенко Марина \frac{15}{15}+\frac{9}{16} [MF]T+AIL+S+BR+CV+T+D+E+H(J ed) 17 10

1. Оптимизация числа тем в вероятностных тематических моделях с помощью регуляризатора строкового разреживания

consultant: А.А. Потапенко

Task: Вероятностная тематическая модель описывает вероятности появления слов w\in W в документах d\in D через латентные темы t\in T:

  p(w|d) = \sum_{t\in T} p(w|t)p(t|d) = \sum_{t\in T} \phi_{wt}\theta_{td}.

Требуется проверить гипотезу, что, накладывая ограничения на матрицу \Theta с помощью регуляризатора строкового разреживания, возможно определить оптимальное число тем.

Data: Коллекция документов задаётся частотами слов. Поскольку для решения задачи необходимо знать <<истинное>> число тем, эксперименты производятся на реалистичных модельных или полумодельных данных.

References:

ментов // Доклады РАН. 2014. — Т. 455, №3 (в печати).

  • Vorontsov K. V. Вероятностное тематическое моделирование. — 2014.

http://www.MachineLearning.ru/wiki/images/2/22/Voron-2013-ptm.pdf

  • Teh Y. W., Jordan M. I., Beal M. J., Blei D. M. Hierarchical Dirichlet processes // Journal of the

American Statistical Association. — 2006. — Vol. 101, no. 476. — Pp. 1566–1581.

Basic algorithm: Для решения оптимизационной задачи используется регуляризованный EM-алгоритм [2014: Воронцов]. Может быть использована рациональная, стохастическая или онлайновая версия EM-алгоритма.

Novelty: Для оптимизации числа тем обычно используется модель иерархического процесса Дирихле HDP [2006: Teh et Al]. Она определяет число тем неустойчиво, and при этом сложна как для понимания, так and для реализации. Аддитивная регуляризация тематических моделей (ARTM) --- это новый подход к тематическому моделированию, сочетающий универсальность, гибкость and простоту. Task оптимизации числа тем ещё не рассматривалась в рамках ARTM.

2. Дифференциальная диагностика заболеваний по электрокардиограмме

consultant: В.Р. Целых

Task: Предлагается решить типичную задачу классификации. Признаками являются 216 характеристик, вычисляемых по электрокардиограмме. Необходимо провести оценку качества классификации по отложенной контрольной выборке. Для этого вычисляются доли ошибок первого and второго рода. Под ошибкой первого рода подразумевается отнесение здоровых к классу больных, второго рода – отнесение больных к классу здоровых. Предпочтение отдается минимизации ошибок второго рода.

Data: Для каждой из 5 болезней есть 2 типа выборок. Эталонные – более надежные, специально отобранные случаи. Остальные – случаи, когда диагнозы устанавливались врачами менее надежно, эти выборки предлагается использовать для контроля.

References:

  • Vorontsov K. V. Метрические алгоритмы классификации. Лекции по машинному обучению. — 2014. http://www.MachineLearning.ru/wiki/images/c/c3/Voron-ML-Metric-slides.pdf
  • Успенский В. М. Информационная функция сердца // Клиническая медицина, 2008. — Т. 86, № 5. — С. 4–13.
  • Успенский В. М. Информационная функция сердца. Теория and практика диагностики заболеваний внутренних органов методом информационного анализа электрокардиосигналов. — М.: «Экономика and информация», 2008. — 116 с.

Basic algorithm: Для решения задачи предлагается использовать метрический алгоритм с жадным отбором признаков.

Novelty: Данные подготовлены по уникальной технологии информационного анализа электрокардиосигналов, разработанной проф. д.м.н. В.М.Успенским. Предложен алгоритм классификации and исследована его обобщающая способность.

3. Влияние регуляризаторов разреживания, сглаживания and декорреляции на устойчивость вероятностной тематической модели

consultant: М.A. Дударенко

Task:Вероятностная тематическая модель описывает вероятности появления слов w\in W в документах d\in D через латентные темы t\in T:

    p(w|d) = \sum_{t\in T} p(w|t)p(t|d) = \sum_{t\in T} \phi_{wt}\theta_{td}.

Представление матрицы \|p(w|d)\|_{W\times D} в виде произведения двух матриц меньшего размера {\Phi=\|\phi_{wt}\|_{W\times T}} and {\Theta=\|\theta_{dt}\|_{T\times D}} не единственно: \Phi \Theta = (\Phi S)(S^{-1}\Theta) = \Phi'\Theta' для некоторых невырожденных S. Требуется проверить гипотезу, что, накладывая ограничения на матрицы \Phi, \Theta с помощью регуляризаторов, возможно повысить устойчивость их восстановления.

Data: Коллекция документов задаётся частотами слов. Поскольку для решения задачи необходимо знать «истинные» матрицы \Phi, \Theta, эксперименты производятся на реалистичных модельных или полумодельных данных, удовлетворяющих гипотезам разреженности, слабой коррелированности тем and наличия фоновых тем.

References:

  • Vorontsov K. V. Аддитивная регуляризация тематических моделей коллекций текстовых документов // Доклады РАН. 2014. — Т. 455, №3 (в печати).
  • Vorontsov K. V. Вероятностное тематическое моделирование. — 2014. http://www.MachineLearning.ru/wiki/images/2/22/Voron-2013-ptm.pdf.

Basic algorithm: Для решения оптимизационной задачи используется регуляризованный EM-алгоритм [2014: Воронцов]. Может быть использована рациональная, стохастическая или онлайновая версия EM-алгоритма.

Novelty: Аддитивная регуляризация тематических моделей (ARTM) предложена в [2014: Воронцов] как универсальный способ повышения устойчивости and интерпретируемости тематических моделей. Однако вопрос о том, какое именно сочетание регуляризаторов повышает устойчивость, пока остаётся открытым. Данное исследование направлено на решение этой проблемы.

4. Построение рейтингов вузов: панельный анализ and оценка устойчивости

consultant: М.П. Кузнецов

Task: Рейтинг вуза изменяется от года к году. Это изменение может быть вызвано плохим качеством методики подсчета рейтинга, случайными изменениями в показателях вуза and целенаправленным изменением состояния вуза. Требуется предложить такую устойчивую к случайным изменениям методику рейтингования, которая бы позволяла интерпретировать изменение состояния вуза.

Data: Данные по ста ведущим мировым университетам за восемь лет.

References:

  • Strizhov V.V. Уточнение Expertных оценок с помощью измеряемых данных // Заводская лаборатория. Диагностика материалов, 2006, 72(7) — 59-64.
  • Strizhov V.V. Уточнение Expertных оценок, выставленных в ранговых шкалах, с помощью измеряемых данных // Заводская лаборатория. Диагностика материалов, 2011, 77(7) — 72-78.
  • Kuznetsov M.P., Strijov V.V. Methods of expert estimations concordance for integral quality estimation // Expert Systems with Applications, 2014.
  • Черновик статьи POF по запросу.

Basic algorithm: Методика построения рейтинга RUR and один из избыточно устойчивых алгоритмов для ранговых шкал.

Novelty: Введено понятие интерпретируемости изменения позиции рейтинга. Решена Task выбора and оптимальной локально-монотонной коррекции показателей. Предложена методика построения рейтинга, позволяющевого интерпретировать изменение состояния вуза с целью мониторинга. Вариант: решена обратная Task управления: как изменить показатели вуза, чтобы достичь заданной цели.

5. Обнаружение закономерностей в наборе временных рядов методами структурного обучения

consultant: А.П. Мотренко

Task: Для повышения качества прогноза временных рядов хочется использовать экспертные высказывания о наличии причинно-следственной связи между событиями. Для этого необходимо уметь оценивать достоверность Expertных высказываний. Доказать наличие причинно-следственной связи статистическими методами невозможно. Исследователь может лишь проверить наличие определенной структуры связи. Целью задачи является, опираясь на экспертные высказывания о наличии связи между событиями, исследовать временные ряды на наличие различных структурных связей and найти структуру, наиболее согласованную с мнением Expertа.

References:

  • R. B. Kline, Principles and Practice of Structural Equation Modeling. New York: Guilford. 2005.
  • J. Pearl, Graphs, Causality and Structural Equation Models. Sociological Methods and Research, 27-2(1998), 226-284.
  • J. Pearl, E. Bareinboim, Transportability of Causal and Statistical Relations: A Formal Approach // Proceedings of the 25th AAAI Conference on Artificial Intelligence, August 7-11, 2011, San Francisco. 247-254
  • Вальков А.С., Кожанов Е.М., Мотренко А.П., Хусаинов Ф.И. Построение кросс-корреляционных зависимостей при прогнозе загруженности железнодорожного узла // Машинное обучение and анализ данных. 2013. T. 1, № 5. C. 505-518.
  • Вальков А.С., Кожанов Е.М., Медведникова М.М., Хусаинов Ф.И. Непараметрическое прогнозирование загруженности системы железнодорожных узлов по историческим данным // Машинное обучение and анализ данных. 2012. T. 1, № 4. C. 448-465.

Basic algorithm: моделирование структурных уравнений, SEM

Novelty: Предложен метод оценки достоверности Expertных высказываний о влиянии биржевых цен на основные инструменты на объем железнодорожных грузоперевозок. Предложены различные структуры связей между временными рядами. Введено понятие сложности структуры. Исследована связь между сложностью структуры and оценкой достоверности высказывания.

18. Использование нелинейного прогнозирования при поиске зависимостей между временными рядами

consultant: А.П. Мотренко

Task: (Как часть исследования, посвященного обнаружению закономерностей в наборах временных рядов) Предлагается отказаться при поиске зависимостей между временными рядами от стандартных предположений о стационарности временного ряда and исследовать временные ряды с точки зрения теории динамических систем, в рамках которой рассматриваются нерегулярные временные зависимости, определенные структурой фазового пространства. Требуется изучить набор подходов к анализу динамических данных and выявлению связей между ними; описать границы применимости базового алгоритма and предложить новые варианты выявляемых структурных связей. Data: Синтетические данные, исторические биржевые цены на основные инструменты and данные по железнодорожным грузоперевозкам.

References:

  • Tools for the Analysis of Chaotic Data. HENRY D. I. ABARBANEL
  • Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series, G. Sugihara, R.M. May.
  • George Sugihara et al. Detecting Causality in Complex Ecosystems. Science 338, 496 (2012);
  • Вальков А.С., Кожанов Е.М., Мотренко А.П., Хусаинов Ф.И. Построение кросс-корреляционных зависимостей при прогнозе загруженности железнодорожного узла // Машинное обучение and анализ данных. 2013. T. 1, № 5. C. 505-518.
  • Вальков А.С., Кожанов Е.М., Медведникова М.М., Хусаинов Ф.И. Непараметрическое прогнозирование загруженности системы железнодорожных узлов по историческим данным // Машинное обучение and анализ данных. 2012. T. 1, № 4. C. 448-465.

Basic algorithm: convergent cross mapping

Novelty: Предложены различные структуры связей между временными рядами and метод проверки наличия связей

6. Последовательное порождение существенно нелинейных моделей в Taskх ранжирования документов

consultant: М.П. Кузнецов

Task: Предложить and протестировать на тестовых and реальных данных алгоритм порождения существенно нелинейных моделей. Алгоритм должен порождать 1) полный набор моделей 2) выбирать оптимальный шаг для фиксированной структуры модели (добавление элемента суперпозиции).

Data: Синтетические данные, данные по текстовым коллекциям LIG.

References:

  • Goswami P., Moura1 S., Gaussier E., Amini M.R. Exploring the Space of IR Functions //
  • Рудой Г.И., Strizhov V.V. Алгоритмы индуктивного порождения суперпозиций для аппроксимации измеряемых данных // Информатика and её применения, 2013, 7(1) — 17-26.
  • Рудой Г.И., Strizhov V.V. Упрощение суперпозиций элементарных функций при помощи преобразований графов по правилам // Интеллектуализация обработки информации. Доклады 9-й международной конференции, 2012 — 140-143.
  • Vladislavleva E.,Smith G., Hertog D., Order of Nonlinearity as a Complexity Measure for Models Generated by Symbolic Regression via Pareto Genetic Programming // IEEE Transactions on Evolutionary Computation, 2009. Vol. 13(2). Pp. 333-349.
  • Vladislavleva E. Model-based Problem Solving through Symbolic Regression via Pareto Genetic Programming: PhD thesis, Tilburg University, Tilburg, the Netherlands, 2008.

Basic algorithm: Алгоритм полного перебора допустимых суперпозиций порождающих функций.

Novelty: Предложен алгоритм последовательного добавления элементы суперпозиций. Предложена функция расстояния между суперпозициями, исследованы ее свойства. Введено понятие сложности суперпозиции and понятие смежных суперпозиций, отличающихся по сложности на единицу. Предложен алгоритм порождения смежных суперпозиций.

7. Обнаружение изоморфных структур существенно нелинейных прогностических моделей

consultant: Р.А. Сологуб, М.П. Кузнецов

Task: Развить алгоритм поиска изоморфных подграфов для деревьев (вариант - для ориентированных ациклических графов). Сравнить сложность алгоритма проверки изоморфности двух суперпозиций для предлагаемого алгоритма and для алгоритма поэлементного сравнения отображений.

Data: Данные по биржевым опционам: зависимость волатильности опциона от цены and времени его исполнения.

References:

  • Рудой Г.И., Strizhov V.V. Алгоритмы индуктивного порождения суперпозиций для аппроксимации измеряемых данных // Информатика and её применения, 2013, 7(1) — 17-26.
  • Рудой Г.И., Strizhov V.V. Упрощение суперпозиций элементарных функций при помощи преобразований графов по правилам // Интеллектуализация обработки информации. Доклады 9-й международной конференции, 2012 — 140-143.
  • Ehrig H., Ehrig G., Prange U.,Taentzer. G. Fundamentals of Algebraic Graph Transformation. Springer, 2006.
  • Ehrig H., Engels G. Handbook of Graph Grammars and Computing by Graph Transformation. World Scientific Publishing, 1997.
  • Strizhov V.V., Сологуб Р.А. Индуктивное порождение регрессионных моделей предполагаемой волатильности для опционных торгов // Вычислительные технологии, 2009, 14(5) — 102-113.

Basic algorithm: Алгоритм поэлементного сравнения отображений.

Novelty: Предложен быстрый алгоритм упрощения суперпозиций and поиска изоморфных моделей. Используется матрица инцидентности набора порождающих функций.

8. Построение прогностических моделей как суперпозиций Expertно-заданных функций

consultant: Н.П. Ивкин

Task: Требуется отнести набор временных рядов к одному из нескольких классов. Предлагается это сделать с помощью процедуры автоматизированного порождения признаков. Для этого Expertно создается набор порождающих функций, которые 1) преобразуют временной ряд (например, сглаживают, раскладывают по главным компонентам), 2) извлекают из временного ряда его агрегированные описания (например, среднее, дисперсию, число экстремумов). Возможно порождение значительного количества признаков путем построения суперпозиций порождающих функций. Полученные признаки используются для классификации набора временных рядов (например, методом ближайших соседей).

Data: данные с акселерометра мобильного телефона.

References:

  • Постановка задачи \MLAlgorithms\Group074\Kuznetsov2013SSAForecasting\doc
  • Хайкин С. Нейронные сети. Вильямс, 2006.

Basic algorithm: нейронная сеть (вариант: нейронная сеть глубокого обучения).

Novelty: Предложен способ извлечения признаков с помощью автоматически построенных суперпозиций Expertно-заданных функций.

Сравнение структурной and топологической сложности в Taskх классификации.

9. Обучение многообразий для прогнозирования наборов квазипериодических временных рядов

consultant: Н.П. Ивкин

Task: Решается Task классификации человеческой активности на основании данных с акселерометра мобильного телефона. Данные с акселерометра представляются квазипериодическими временными рядами. Требуется отнести временной ряд к одному из видов активности: бег, ходьба and др. Для решения задачи классификации рядов предлагается метод на основе ближайших соседей в пространстве многообразий.

Data: данные с акселерометра мобильного телефона.

References:

  • Mi Zhang; Sawchuk, A.A., "Manifold Learning and Recognition of Human Activity Using Body-Area Sensors," Machine Learning and Applications and Workshops (ICMLA), 2011 10th International Conference on , vol.2, no., pp.7,13, 18-21 Dec. 2011

Basic algorithm: нейронная сеть

Novelty: предложен способ классификации квазипериодических временных рядов на основе многообразий

10. Интерпретация мультимоделей при обработке социологических данных

consultant: А.А. Адуенко

Task: Task кредитного скоринга заключается в определении уровня кредитоспособности заемщика, подавшего заявку на кредит. Для этого используется анкета заемщика, содержащая как числовые данные (возраст, доход, время проживания в стране), так and категориальные признаки (пол, профессия). Требуется, имея историческую информацию о возвратах кредитов другими заемщиками, определить, вернет ли кредит рассматриваемый клиент. Таким образом, требуется решить задачу классификации. Так как данные могут быть разнородными (например, в случае наличия в стране разных регионов по доходу), данные могут описываться не одной, а несколькими моделями. В данной работе предлагается сравнить два метода построения мультимоделей: смеси логистических моделей and градиентный бустинг.

Data: данные по потребительским кредитам (\mlalgorithms\BSThesis\Aduenko2013\data).

References:

  • смеси моделей (\mlalgorithms\BSThesis\Aduenko2013\doc, Bishop)
  • бустинг (лекция «Композиционные методы классификации and регрессии» Воронцова)

Basic algorithm: бустинг.

Novelty: Выявление and объяснение сходств and различий решений, полученных двумя указанными алгоритмами.

11. Выбор оптимальных структур прогностических моделей методами структурного обучения

consultant: А.А. Варфоломеева

Task: Предлагается решать задачу прогнозирования в два этапа: сначала по Storyм построения успешных прогнозов восстанавливается структура прогностической модели. Затем параметры модели оптимизируются; с помощью модели строится прогноз временного ряда.

Data: синтетическая выборка, биомедицинские временные ряды, результаты измерений акселерометра.

References:

Basic algorithm: алгоритм метапрогнозирования, описанный в дипломной работе.

Novelty: Предложен метод восстановления структур моделей с использованием априорных предположений об этих структурах.

12. Инварианты при прогнозировании квазипериодических рядов

consultant: А.А. Кузьмин

Task: Решается Task почасового прогнозирования цен/потребления электроэнегрии на сутки вперед. При построении матрицы плана предлагается использовать не исходный отрезок временного временной ряда, а его инвариантное представление.

Data: почасовые данные о ценах and объема потребления электроэнергии (вставить ссылку).

References:

  • Сандуляну Л.Н., Strizhov V.V. Выбор признаков в авторегрессионных Taskх прогнозирования // Информационные технологии, 2012, 7 — 11-15.
  • (взять из последней статьи Фадеева)

Basic algorithm: авторегрессионное прогнозирование, описанное в работе Сандуляну.

Novelty: Предложен алгоритм совместной оценки параметров инвариантов and авторегрессионной модели, позволяющий существенно повысить точность прогнозирования.

13. Прогнозирование объемов железнодорожных грузоперевозок по парам веток

consultant: М.М. Стенина (Медведникова)

Task: Спрогнозировать объемы перевозок с ветки на ветку, сравнить с базовым алгоритмом прогноза отправления вагонов с ветки. Проверить гипотезу о том, что прогноз перевозок с ветки на ветку точнее, чем прогноз при помощи базового алгоритма. Исследовать ряды на тренд/периодичность. Если тренд/периодичность есть, то включить в модель. Подготовить алгоритм прогнозирования для использования.

Data: посуточные данные за полтора года о перевозках 38 типов грузов по Омской области.

References:

  • Вальков А.С., Кожанов Е.М., Медведникова М.М., Хусаинов Ф.И. Непараметрическое прогнозирование загруженности системы железнодорожных узлов по историческим данным // Машинное обучение and анализ данных. — 2012. — № 4.

Basic algorithm: гистограммное прогнозирование, описанное в статье.

Novelty: предлагается повысить качество прогноза путем разделения данных на меньшие части and прогнозирования перевозок по конкретным веткам вместо прогноза отправления вагонов.

14. Выбор оптимальной модели прогнозирования физической активности человека по измерениям акселерометра

consultant: А.А. Токмакова

Task: Предложить алгоритм последовательной модификации нейронной сети. Цель - найти наиболее простую, устойчивую and точную конфигурацию сети, позволяющую решить задачу двухклассового (вариант: многоклассового) прогнозирования физической активности.

Data: Набор временных рядов измерений акселерометра.

References:

  • Прореживание нейронных семей на сайте Machinelearning.ru.
  • Хайкин С. Нейронные сети. Вильямс, 2006.

Basic algorithm: Optimal Brain Damage/Optimal Brain Surgery.

Novelty: Предложен способ последовательного порождения нейронных сетей оптимальной сложности. Исследована устойчивость порождаемых моделей.

15. Метапрогнозирование временных рядов

consultant: А.С. Инякин, Н.П. Ивкин

Task: Задан набор алгоритмов прогнозирования временных рядов. По предъявленному временному ряду требуется указать алгоритм, который доставляет наиболее точный прогноз. При этом сам алгоритм выполнять не предполагается. Для решения этой задачи предлагается построить набор признаков, описывающих временной ряд Expertно создается набор порождающих функций, которые 1) преобразуют временной ряд (например, сглаживают, раскладывают по главным компонентам), 2) извлекают из временного ряда его агрегированные описания (например, среднее, дисперсию, число экстремумов). Возможно порождение значительного количества признаков путем построения суперпозиций порождающих функций.

Data: Библиотека квазипериодических and апериодических временных рядов

References:

  • Kuznetsov M.P., Мафусалов А.А., Животовский Н.К., Зайцев Е., Сунгуров Д.С. Сглаживающие алгоритмы прогнозирования // Машинное обучение and анализ данных. 2011. T. 1, № 1. C. 104-112.
  • Фадеев И.В., Ivkin N.P., Савинов Н.А., Корниенко А.И., Кононенко Д.С., Джамтырова Р.Б. Авторегрессионные алгоритмы прогнозирования // Машинное обучение and анализ данных. 2011. T. 1, № 1. C. 92-103.

Basic algorithm: Использовать алгоритм SAS/SPSS.

Novelty: Предложен метод быстрого выбора оптимального прогностического алгоритма по описанию временного ряда.

16. Идентификация человека по изображению радужной оболочки глаза

consultant: И.А. Матвеев

Task: В проблеме идентификации человека по изображению радужной оболочки глаза (радужке) важнейшую роль играет выделение области радужки на исходном снимке (сегментация радужки). Однако, изображение радужки как правило частично закрыто (затенено) веками, ресницами, бликами, то есть часть радужки не может быть использована для распознавания and более того, использование данных с затенённых участков может порождать ложные признаки and снижать точность. Поэтому одним из важных этапов сегментации изображения радужки является отбраковка затенённых участков.

Data: растровое монохромное изображение, типичный размер 640*480 пикселей (однако, возможны and другие размеры) and координаты центров and радиусы двух окружностей, аппроксимирующих зрачок and радужку.

References:

  • Описание задачи and предлагаемые пути решения
  • Monro D. University of Bath Iris Image Database // http:// www.bath.ac.uk/ elec-eng/ research/ sipg/ irisweb/
  • Chinese academy of sciences institute of automation (CASIA) CASIA Iris image database // http://www.cb-sr.ia.ac.cn/IrisDatabase.htm, 2005.
  • MMU Iris Image Database: Multimedia University // http:// pesonna.mmu.edu.my/ ccteo/
  • Phillips P.J., Scruggs W.T., O’Toole A.J. et al. Frvt2006 and ice2006 large–scale experimental results // IEEE PAMI. 2010. V. 32. № 5. P. 831–846.
  • G.Xu, Z.Zhang, Y.Ma Improving the performance of iris recogniton system using eyelids and eyelashes detection and iris image enhancement // Proc. 5Th Int. Conf. Cognitive Informatics. 2006. P.871-876.

Basic algorithm: метод, использующий скользящее окно and текстурные признаки [2006: Xu, Zhang, Ma].

Novelty: построена маска открытой области радужки.

17. Поиск эффективных методов снижения размерности при решении задач мультиклассовой классификации путем её сведения к решению бинарных задач

consultant: Ю.В. Максимов

Task: Исследовать различные подходы к решению задач классификации с многими классами and сравнить их эффективность.

Data: Данные с различным числом классов. 0. Toy example: Shuttle dataset. http://archive.ics.uci.edu/ml/datasets/Statlog+(Shuttle). Маленькая выборка, 7 классов. Не надо делать подготовку данных. 1. Текстовые данные коллекции Reuters http://www.daviddlewis.com/resources/testcollections/reuters21578/. 2. Данные нашего конкурса Kaggle от LIG http://www.kaggle.com/c/lshtc

References:

Базовые алгоритмы: SVM с различными ядрами, Adaboost. Базовые подходы: one vs all(combined), one vs one(uncombined)

Домашнее задание-2: пробное программирование

Task Кто делает Номер
Дана выборка "Вина различных регионов". Требуется определить кластеры (регионы происхождения вин) and нарисовать результат: цветной точкой обозначен объект кластера; цветным кружком обозначен класс этого объекта, взятый из выборки. Вариант задания: определить число кластеров. Вариант задания: использовать два алгоритма, например k-means and EM, and показать сравнение результатов кластеризации на графике. Плавин 1
Предложить способы визуализации наборов четырехмерных векторов, например для Fisher's iris data. Записать свою фамилию тут. 2
Дан временной ряд, описывающий потребление электричества. Приблизить ряд несколькими криволинейными моделями and нарисовать спрогнозированные and исходный ряды на одном графике. Кулунчаков Андрей. 3
Сгладить временной ряд Цены (объемы) на основные биржевые инструменты методом экспоненциального сглаживания. Нарисовать цветные графики сглаженных с различным  \alpha рядов and исходного ряда. Авдюхов 4
Аппроксимация выборки замкнутой кривой [135]: проверить, лежат ли точки на окружности? Сгенерировать данные самостоятельно. Газизуллина Римма 5
Дан временной ряд с пропусками, например [136]. Предложить способы заполнения пропусков в данных, заполнить пропуски. Для каждого способа построить гистограмму. Вариант: взять выборку без пропусков, удалить случайным образом часть данных, заполнить пропуски, сравнить с гистограммой исходной выборки. Игнатов Андрей 6
Дана выборка "Вина различных регионов". Выбрать два признака. Рассмотреть различные функции расстояния при классификации с помощью метода ближайшего соседа. Для каждой изобразить результат классификации в пространстве выбранных признаков. Попова Мария 7
Для различных видов зависимости  y = f(x) + \epsilon (линейная, квадратичная, логарифмическая) построить линейную регрессию and нарисовать на графике SSE-отклонения (среднеквадратичные отклонения-?). Данные сгенерировать самостоятельно или взять данные "Цена на хлеб". Ефимова Ирина 8
Оценить площадь единичного круга методом Монте-Карло. Построить график зависимости результата от размера выборки. Шинкевич Михаил 9
Построить выпуклую оболочку точек на плоскости. Нарисовать график: точки and их выпуклая оболочка – замкнутая ломаная линия. Макарова Анастасия 10
Дана выборка: ирисы Фишера. Реализовать процедуру классификации методом решающего дерева. Проиллюстрировать результаты классификации на плоскости в пространстве двух признаков. Жуков Андрей 11
Задан временной ряд – объемы почасового потребления электроэнергии (выбрать любые два дня). Аппроксимировать ряд полиномиальными моделями различных степеней (1-7). *Предложить метод определения оптимальной степени полинома. Карасиков Михаил 12
Задано два одномерных временных ряда различной длины. Вычислить расстояние между рядами методом динамического выравнивания. Гринчук Алексей 13
Сгенерировать набор точек на плоскости. Выделить and визуализировать главные компоненты. Липатова 14
Аппроксимировать выборку цены на хлеб полиномиальной моделью. Нарисовать график. Пометить объекты, являющиеся выбросами, используя правило трех сигм. Швец Михаил 15
Разделить выборку ирисы Фишера на кластеры. Проиллюстрировать на графике результаты кластеризации, выделить кластеры разными цветами. Гущин Александр 16
И еще задания на выбор
Дана выборка из нескольких признаков, без целевого вектора Y. Например, эта https://dmba.svn.sourceforge.net/svnroot/dmba/Data/Diabets_LARS.csv Требуется указать тот признак, который хорошо описывается (в терминах линейной регрессии) остальными (такой признак обычно исключают из выборки). 17
Сгладить временной ряд (см. библиотеку) скользящим средним. Взять несколько окон разной длины and наложить результат на графике друг на друга. Костюк 18
Дан временной ряд (см. библиотеку). По его вариационному ряду построить гистограмму из n перцентилей, нарисовать ее. Какое значение временного ряда встречается чаще всего? Гиззатуллин Анвар 19
Показать разницу в скорости выполнения матричных операций and операций в цикле. Можно использовать в качестве примера Сингулярное разложение and другие методы линейной алгебры. Показать эффективность параллельных вычислений (parfor). 20
Разобраться как работает суперпозиция функций. С помощью функции @ породить все возможные полиномы от n переменных степени не более p. Вариант: приблизить полученными полиномами временной ряд цен на хлеб (данные).

2013

Моя первая публикация с кросс-рецензированием

Задачи

Task name Author Link MAIPVTDCHSJ
Определение напечатанного изображения Пушняков Алексей [137] MAIPVTDCHSJ
Сравнение быстрых алгоритмов кластеризации Катруца Александр [138] MAIPVTDCHS
Векторная авторегрессия and управление макроэкономическими показателями Кащеева Мария [139] MAIPVTDCHS
Разметка библиографических записей с помощью логических алгоритмов Рыскина Мария [140] MAIPVTDCHS
Определение точной границы зрачка Чинаев Николай [141] MAIPV.DCHS
Векторная авторегрессия and управление макроэкономическими показателями Гринчук Олег [142] MAIPVTD.HS
Порождение нейронных сетей с Expertно-заданными функциями активации Перекрестенко Дмитрий [143] MAIPVTDСHS
Сравнительный анализ алгоритмов выбора признаков: точность, устойчивость, сложность регрессионных моделей Яшков Даниил [144] MAI.VTD.HS
Инвариантные преобразования в Taskх локального прогнозирования Костин Александр [145] MAI.VT.HS
Алгоритм генетического программирования для решения задачи прогнозирования Воронов Сергей [146] MAIPVTDC.S
Группировка номинальных переменных в Taskх банковского кредитного скоринга Митяшов Андрей [147] MAIPVTDCHS
Моделирование процесса обучения and забывания при оценке качества производства Неклюдов Кирилл [148] MAI..DC.S
Обзор алгоритмов упрощения алгебраических выражений Шубин Андрей [149] MAIPVTD.S
Алгоритмы переборного поиска наиболее информативных объектов and признаков в логистической регрессии Ибраимова Айжан [150] MAIP.TD..
Интерпретация Expertных оценок видов Красной книги РФ путем отбора эталонных (представительных) объектов Бырдин Александр [151] MAI.TD.S
Визуализация матрицы парных расстояний в тематическом моделировании Вдовина Евгения [152] MAI.TDC.S
Алгоритм оценивания достоверности Expertных суждений о взаимосвязи временных рядов Антипова Наташа [153] MAIP.T..S

Task 2. Surname2013MassProduction (*eng)

  • Название. Порождение and оптимизация логических описаний при построении производственных линий.
  • Проблема. Требуется поставить задачу синтеза допустимых суперпозиций, разработать алгоритм and протестировать его на синтетических данных.
  • Данные. Требуется создать.
  • References:. Нужен поиск (скорее всего немецких публикаций).
  • Предлагаемый алгоритм. Обсуждается.
  • Basic algorithm. Нет.

Task 3. Surname2013LearnForget (eng)

  • Название. Моделирование процесса обучения and забывания при оценке качества производства.
  • Проблема. Найти адекватную регрессионную модель, описывающую деятельность группы людей.
  • Данные. Данные по скорости and качеству сборки бумажных самолетиков.
  • References:. Нужно искать.
  • Предлагаемый алгоритм. Процедура анализа регрессионных остатков.
  • Basic algorithm. Регрессионная модель в прилагаемой статье.

Task 4. Surname2013GeneticProg

  • Название. Алгоритм генетического программирования для решения задачи прогнозирования.
  • Проблема. Создать алгоритм генетического программирования, решающий проблемы, названные Иваном Зелинкой. Предложить способ тестирования получаемых моделей, организовать скользящий контроль. Сравнить работу его на тестовом наборе задач с работой других алгоритмов ГП and с нейронными сетями.
  • Данные. Тестовый набор задач, взять на UCI или на Полигоне.
  • References:. Zelinka, Oplatkova, Vladislavleva; найти работы последних лет по этой теме. Особенно по тестированию этих алгоритмов.
  • Предлагаемый алгоритм. ГП.
  • Basic algorithm. ГП, нейронные сети.

Task 5. Surname2013Simplify

  • Название. Обзор алгоритмов упрощения алгебраических выражений.
  • Проблема. Требуется найти литературу по алгоритмам, упрощающим выражения, сравнить алгоритмы, запрограммировать алгоритм, предложенный в работе Рудой/Стрижов.
  • Данные. Собрать тестовую коллекцию выражений.
  • References:. Graph rewriting.
  • Предлагаемый алгоритм. Р/С, сравнение алгоритмов.

Task 6. Surname2013RedListExplanation

  • Название. Интерпретация Expertных оценок видов Красной книги РФ путем отбора эталонных (представительных) объектов.
  • Проблема. Отбор эталонных объектов (алгоритм STOLP). Этот алгоритм может быть интересен для Expertов: он быстро находит шумовые объекты, которых в наших терминах считаются противоречащими Expertным данным and "лежащими не в своем классе", а также отбирает эталонные объекты, которые также любопытно интерпретируются. С математической точки зрения интересно, во-первых, понаблюдать за разными метриками (обобщениями расстояния Хэмминга) и, самое главное, надо обобщить формулу отступа (margin) на случай монотонных классов, видимо, введя весовую функцию объектов.
  • Данные. экспертные оценки краснокнижных видов.
  • References:. References: по алгоритмам метрической классификации.
  • Предлагаемый алгоритм. Метод или алгоритм, который сообщает Expertу почему (sic!) объект не попал в предполагаемый Expertом класс.

Task 7. Surname2013RedListClassification

  • Название. Алгоритм монотонной классификации объектов, описанных в ранговых шкалах.
  • Проблема. Применить решающее дерево к Expertным оценкам угрожаемости краснокнижных видов. Сравнить с ранее предложенными алгоритмами. Обосновывать операции с ранговыми признаками, ввести обобщение понятия информативности на случай монотонных классов, видимо, сделать обобщение гипергеометрического распределения.
  • Данные. экспертные оценки краснокнижных видов.
  • References:. Нужно постараться избежать ссылок на тривиальные источники. Поискать похожие работы в иностранных журналах.

Task 11. Surname2013Invaraint4LocalForecast

  • Название. Инвариантные преобразования в Taskх локального прогнозирования.
  • Проблема. Совместить алгоритмы инвариантного преобразования времени and амплитуды прогнозируемых временных рядов.
  • Данные. Временные ряды измерения пульсовой волны.
  • References:. Найти, избежать тривиальных ссылок.

Task 8. Surname2013PlausibleExpert

  • Название. Алгоритм оценивания достоверности Expertных суждений о взаимосвязи временных рядов.
  • Проблема. Исследование взаимосвязи биржевых цен на основные инструменты and железнодорожных грузоперевозок.
  • Данные. Временные ряды за 1.5 года. Но лучше подобрать синтетический пример.
  • References:. Публикации по CCM.
  • Предлагаемый алгоритм. Модификации ССМ.

Task 9. Surname2013DeepLearning

  • Название. Порождение нейронных сетей с Expertно-заданными функциями активации.
  • Проблема. Требуется поднять современное состояние области DeepLearning, запрограммировать алгоритм, протестировать на задаче прогнозирования объемов потребления and цен на электроэнергию.
  • Данные. Посуточные данные за три года.
  • References:. Deep Learning.
  • Предлагаемый алгоритм. Построение нейронной сети and оценка ее параметров.

Task 16. Surname2013ScoringSelection

  • Название. Алгоритмы переборного поиска наиболее информативных объектов and признаков в логистической регрессии.
  • Проблема. С помощью генетического алгоритма найти информативные объекты and признаки.
  • Данные. Данные по потребительским кредитам.
  • References:. -

Task 10. Surname2013ScoringFeatureSelection

  • Название. Группировка номинальных переменных в Taskх банковского кредитного скоринга.
  • Проблема. Создать генетический алгоритм снижения размерности признакового пространства.
  • Данные. Исторические данные по кредитам наличностью.
  • References:. SAS, найти еще.

Task 15. Surname2013InverseVAR

  • Название. Векторная авторегрессия and управление макроэкономическими показателями.
  • Проблема. Решить обратную задачу прогнозирования. По заданному состоянию экономики задать такое значение управляемых макроэкономических показателей, которое бы привело экономику в желаемое состояние.
  • Данные. Макроэкономические показатели России за последние 16 лет.
  • References:. Работы С.А. Айвазяна.

Task 12. Surname2013DistanceVisualizing

  • Название. Визуализация матрицы парных расстояний в тематическом моделировании.
  • Проблема. Отобразить тезисы конференции на плоскости с сохранением кластеров.
  • Данные. Тезисы конференции EURO.
  • References:. Зиновьев на ML, References: по теме.
  • Предлагаемый алгоритм. PCA.
  • Basic algorithm. Алгоритм с минимизацией энергетического критерия.

Task 13. Surname2013RhoNets

  • Название. Сравнение быстрых алгоритмов кластеризации.
  • Проблема. Сравнить алгоритм кластеризации с использованием $\rho$-сетей and быстрый алгоритм $k$-средних.
  • Данные. Была выборка аминокислотных последовательностей. Нужна тестовая выборка из UCI или из работ по сравнению.
  • References:. $k$-средних, $\varepsilon$-сети.
  • Предлагаемый алгоритм. $\rho$-сети.
  • Basic algorithm. $k$-средних.

Task 17. Surname2013FeatureSelection

  • Название. Сравнительный анализ алгоритмов выбора признаков: точность, устойчивость, сложность регрессионных моделей.
  • Проблема. Построить ряд тестовых задач для сравнения алгоритмов. Предложить алгоритм выбора признаков с анализом ковариационных матриц, основанных на методе Белсли.
  • Данные. Синтетические.
  • References:. Леонтьева/Стрижов, поискать современные обзоры.

Task 1. Surname2013Txt2Bib

  • Название. Разметка библиографических записей с помощью логических алгоритмов.
  • Проблема. Требуется создать алгоритм разметки текста. Новизна в постановке задачи. Актуальность в том, что будет создана более полная библиотека логических выражений and выбран адекватный алгоритм.
  • Данные. В MLAlgorithms.
  • References:. Работа А. Ивановой and все, что есть по теме за последние два года.
  • Предлагаемый алгоритм. Выбрать из логических алгоритмов классификации; дополнительно кластеризация.
  • Basic algorithm. Тупиковые покрытия.

Task 14. Surname2013FindTheFormula (Risky)

  • Название. Алгоритм поиска текстовых структур в документе.
  • Проблема. Предложить алгоритм, который бы в документе TeX искал бы формулы, эквивалентные заданной.
  • Данные. Синтетические, коллекция MLAlgorithms.
  • References:. Надо искать. Поиск по химическим соединениям в WoK работает неплохо.

Task 18. Surname2013ScannedImage (Image)

  • Название. Определение типа бланка.
  • Проблема. Определить тип бланка по скану.
  • Данные. Набор изображений в TIF.

Task 19. Surname2013SpectrumImage (Image)

  • Название. Определение напечатанного изображения.
  • Проблема. Сделать спектральное преобразование изображения, исследовать спектр.
  • Данные. Набор изображений в JPG, отнесенных в два класса.


Task Кто делает
Дан набор трехэлементных векторов. Первые два элемента нарисовать по осям абсцисс and ординат. Третий элемент отобразить как круг с пропорциональным радиусом. Пропорции подобрать исходя из чувства прекрасного. Сравнить полученный график с plot3. Что лучше? Митяшов Андрей
Дан пятиэлементный вектор. Нарисовать лицо Чернова. Что лучше - лицо Чернова или диаграмма? Неклюдов Кирилл
Разобраться как работает regexp в Матлабе. Сделать код, который выделяет все, что находится внутри скобок некоторого арифметического выражения. Рыскина Мария
Разобраться как работает суперпозиция функций. С помощью функции @ породить все возможные полиномы от n переменных степени не более p. Шубин Андрей
Разобраться как работает web-соединение and regexp. Сделать поисковый запрос по теме and сверстать из нее запись BibTeX.
Дан временной ряд из m + 1 (случайных) точек. Приблизить m его первых точек полиномами степени от 1 до m. Вычислить среднюю ошибку в точках. Какая степень дает наибольшую ошибку? Воронов Сергей
Повернуть and увеличить плоскую фигуру, сделать эффект приближения с вращением по кадрам. Антипова Наташа
Заданы две матрицы. Проверить, есть ли в них пересечение – подматрица? Вдовина Евгения
Дана выборка из нескольких признаков, без целевого вектора Y. Например, эта https://dmba.svn.sourceforge.net/svnroot/dmba/Data/Diabets_LARS.csv Требуется указать тот признак, который хорошо описывается (в терминах линейной регрессии) остальными (такой признак обычно исключают из выборки). Гринчук Олег
Дана выборка, в которой есть несколько выбросов. Известно, что она может быть описана одномерной линейной регрессией. Требуется переборным путем найти выбросы. Показать их на графике. Пушняков Алексей
Дана выборка из двух классов на плоскости. Требуется найти все объекты, которые залезли в чужой класс. Показать их на графике. Кащеева Мария
На вход подается матрица инцидентности дерева. Функция возвращает список (вектор) вершин в порядке их посещения. Ибраимова Айжан
Классифицировать цветы ириса произвольным алгоритмом, нарисовать на плоскости «самую наглядную» пару признаков, указать, что классифицировалось правильно, а что – нет. Яшков Даниил
Дан временной ряд. По его вариационному ряду построить гистограмму из n перцентилей, нарисовать ее. Какое значение временного ряда встречается чаще всего?
Создать несколько групп точек на плоскости and выполнить их кластеризацию, используя любой алгоритм на выбор. Визуализировать полученные кластеры. Посчитать среднее внутрикластерное расстояние для одного кластера. Перекрестенко Дмитрий
Загрузить звуковой ряд, желательно несколько нот фортепиано. Выделить and проиграть определенную ноту.
Загрузить видеоряд. Удалить каждый второй кадр. Обработать по вкусу. Записать обратно. Бырдин Александр
Показать разницу в скорости выполнения матричных операций and операций в цикле. Показать эффективность параллельных вычислений (parfor and другие). Катруца Александр
Предложить варианты визуализации четырехмерных векторов and пространств. Сравнить их со встроенной функцией.
Сгладить временной ряд скользящим средним. Взять несколько окон разной длины and наложить результат на графике друг на друга. Чинаев Николай
Нарисовать поверхность. Каждую точку поверхности заменить медианой от n соседей. Нарисовать результат. Костин Александр

2012

Тематическое моделирование: публикация в журнале ВАК

Статус публикации работ см. внизу страницы, раздел "Публикация работ". Ожидается публикация всех работ до конца мая 2013.


Список задач

Task name Author Link to work Comments
Вычисление интегральных индикаторов в ранговых шкалах методами ко-кластеризации Медведникова Мария [154] Опубликовано
Иерархическая тематическая кластеризация тезисов and визуализация Кузьмин Арсентий [155] Опубликовано
Совместный выбор объектов and признаков в Taskх многоклассовой классификации. Адуенко Александр [156] Опубликовано
Построение иерархических тематических моделей Цыганова Светлана [157] Опубликовано
Выбор признаков в Taskх структурной регрессии Варфоломеева Анна [158] Принято
Статистические критерии однородности and согласия для сильно разреженных дискретных распределений Целых Влада

[159]

Опубликовано
Построение логических правил при разметке текстов Иванова Алина [160] Принято
Проверка адекватности тематической модели Степан Лобастов [161] Редакция


1. 2012CoRegression

  • Name: Вычисление интегральных индикаторов в ранговых шкалах методами ко-кластеризации.
  • Тизер: Построение интегральной оценки эффективности научной деятельности.
  • Data: Синтетические. ПРНД сотрудников. Таблица авторы-журналы and число статей выбранных авторов в журналах.
  • References: Vorontsov K. V. «Коллаборативная фильтрация».
  • Ключевые слова: индекс Хирша, ко-кластеризация, коллаборативная фильтрация.
  • Предлагаемый алгоритм Совместная регрессия (придумать или найти готовую).
  • Basic algorithm: Вычисленный IF журналов and h-index авторов. (Кокластеризация или адаптивная фильтрация для сравнения на годится).
  • Проблема: Описание в файле. Дополнительно: при создании рейтинга встает проблема разбиения множества авторов and журналов на кластеры. Размер кластера требуется соотнести с "Оценкой вовлеченности автора/журнала в научное сообщество". Эта оценка должна войти в рейтинг (в крайнем случае, должна быть представлена отдельно).

2. 2012ExpertRanking

  • Name: Согласование ранговых Expertных оценок.
  • Тизер: Методы ранжирования при голосовании (выборе литературных произведений, выборе ограниченного комитета).
  • Data: Интернет-голосование за список книг, голосование без кооптации.
  • References: Статья в Notices AMS, 2008, 55(4). Нужно будет сделать обзор литературы по этой проблеме.
  • Предлагаемый алгоритм: Нахождение пересечения конусов and оценка эффективной размерности пространства или другой алгоритм.
  • Basic algorithm: Медиана Кемени and другие алгоритмы.
  • Проблема: Требуется проиллюстрировать and изучить свойства алгоритма выбора комитета. В частности, осветить следующую проблему. Рейтинг n выбранных кандидатов отличается от рейтинга n+k выбранных кандидатов, при единственном голосовании с выбором из N кандидатов. Возможно, требуется осветить парадокс Эрроу.

3. 2012StructureRegression

  • Name: Выбор признаков в Taskх структурной регрессии
  • Тизер: Алгоритм структурной регрессии для разметки библиографических списков, тезисов and других структурированных текстов.
  • Data: библиографические записи из BibTeX collection on CS.
  • References: работы Jaakkola and его команды, возможно, код.
  • Предлагаемый алгоритм: Структурная регрессия.
  • Basic algorithm: описан Валентином.
  • Требуется: сегментировать входной текст and поставить в соответствие каждому сегменту поле, а каждой группе полей - тип библиографической записи.

4. 2012LogicClassification

  • Name: Построение логических правил при разметке текстов
  • Тизер: Алгоритм структурной регрессии для разметки библиографических списков, тезисов and других структурированных текстов.
  • Data: библиографические записи из BibTeX collection on CS / тезисы конференций, другие размеченные тексты.
  • References: работы Инякина, Чувилина, Кудинова.
  • Предлагаемый алгоритм: Решающие деревья, тупиковые покрытия.
  • Basic algorithm: описан Валентином.
  • Требуется: обучить модель, разметки текста, используя решающие правила над RegExp - строками.

5. 2012RankClustering

  • Name: Ранговая кластеризация and алгоритмы динамического выравнивания.
  • Тизер: Поиск дубликатов в библиографических записях. Динамическое выравнивание при нахождении дубликатов библиографических записей.
  • Data: Испорченные and некорректные библиографические записи (базы студенческих рефератов). Более 1000 библиографических записей из статей/книг по анализу данных.
  • References: Стрижов et al. «Метрическая кластеризация последовательностей», работы по быстрой кластеризации k-Means.
  • Ключевые слова: DTW — модификации, k-Means.
  • Предлагаемый алгоритм: Алгоритм ранговой кластеризации.
  • Basic algorithm: k-Means and его высокопроизводительные вариации.
  • Проблема: Требуется модифицировать процедуру вычисления стоимости пути выравнивания так, чтобы обнаруживать and учитывать инварианты перестановок (и допустимых модицикаций) частей библиографической записи.

6. 2012ThematicClustering

  • Name: Проверка адекватности тематической модели.
  • Тизер: Методы выявления некорректной тематической классификации на материалах конференции. Методы построения тематической модели, сходной с заданной. Кластеризация статей, иерархические тематические модели с тематической интерпретируемостью. Иерархическая тематическая кластеризация тезисов.
  • Data: Тексты тезисов конференции Евро-2012, 1862 тезиса.
  • References: по кластеризации, and введению расстояний между текстами как мешками слов.
  • Ключевые слова: иерархическая кластеризация, метрики сходства текстов.
  • Предлагаемый алгоритм: алгоритм иерархической кластеризации k-means + классификация k-NN.
  • Basic algorithm: k-Means
  • Проблема: Требуется построить тематическую модель методом кластеризации and проверить корректность текущей классификации текстов. Для этого выполняется (иерархическая) кластеризация текстов, каждому кластеру ставится в соответствие название темы, соответствующее большинству статей из кластера. После построения модели каждая статья проверяется and относится к своей или к чужой теме.

7. 2012ThematicHierarchy

  • Name: Построение иерархических тематических моделей.
  • Тизер: Иерархическая тематическая кластеризация тезисов. Построение тематической модели на материалах конференции.
  • Data: Тексты тезисов.
  • References: иерархические модели, topic modelling.
  • Ключевые слова: иерархическое тематическое моделирование.
  • Предлагаемый алгоритм: иерархические модели, оценка распределения по темам.
  • Basic algorithm: PLSA--LDA.
  • Проблема: Требуется построить иерархическую тематическую модель путем вычисления статистических оценок функций распределения слов по темам.

8. 2012ThematicVisualizing

  • Name: Визуализация иерархических тематических моделей.
  • Тизер: На материалах конференции EURO.
  • Data: Тексты тезисов конференции Евро-2012.
  • References: многомерное шкалирование, кластеризация.
  • Ключевые слова: визуализация графов.
  • Предлагаемый алгоритм:
  • Basic algorithm: --
  • Проблема: Требуется визуализировать матрицу парных расстояний таким образом, чтобы можно было принять решение о
    • корректировки названий тем/подтем конференции,
    • переносе тезиса из одной темы в другую,
    • адекватности соответствия модельной and фактический кластеризации.

9. 2012CovSelection

  • Name: Совместный выбор объектов and признаков в Taskх многоклассовой классификации.
  • Тизер: Ранжирование поисковых выдач Яндекса.
  • Data: Яндекс – математика.
  • References: Бишоп, Стрижов.
  • Ключевые слова: логистическая регрессия, выбор признаков, фильтрация объектов.
  • Предлагаемый алгоритм: Совместный выбор путем анализа ковариационных матриц.
  • Basic algorithm: SVM.
  • Проблема: Взять матрицу T, с. 209 Бишопа, сделать многоклассовую классификацию (с. 208). Проверить на синтетической выборке того же формата, что and данные Яндекса. (Для сравнения запустить алгоритм SVM на этой же выборке.Связать с выбором признаков.) Оценить матрицы гиперпараметров многоклассовой регрессионной модели. Предложить пошаговый алгоритм совместного выбора с максимизацией правдоподобия модели.

10. 2012ThematicMatching

  • Name: Определение соответствия документа тематике на основе выделения ключевых фраз.
  • Тизер: Соответствует ли диссертация объявленному паспорту диссертации? Какова фактическая специальность диссертации?
  • Data: Авторефераты диссертаций (SugarSync). Паспорта специальностей.
  • References: (Статья С. Царькова «Морфологические and статистические методы выделения ключевых фраз для построения вероятностных тематических моделей коллекций текстовых документов» - проверить).
  • Ключевые слова: ключевые фразы, тематические модели, N-граммы, морфологические and статистические признаки.
  • Предлагаемый алгоритм:
  • Basic algorithm: C-Value and TF-IDF.
  • Проблема: Требуется проверить каждый автореферат из коллекции на формальное соответствие паспорту декларируемой в автореферате специальности. При этом пункты паспорта рассматриваются как описания тем. Реферат считается соответствующим данной теме, если в совокупная вероятность принадлежности заданного числа терминов к одному из описаний темы данной специальности выше, чем принадлежность описаниям темы других специальностей.
  • Проблема, еще раз: Выделяем ключевые слова из документа. Считаем, что паспорт специальности состоит из ключевых слов. Находим расстояния от одного набора ключевых слов до другого. В итоге
    • пополняем паспорт известной специальности новыми ключевыми словами, либо
    • находим ближайший паспорт специальности.
  • Варианты решения: Введение функции расстояния от совокупности терминов до описания темы, построение матрицы таких расстояний.

11. 2012FeatureGen

  • Name: Последовательное порождение and выбор признаков в задаче многоклассовой классификации
  • Тизер: Научно ли данное произведение? Определение типа произведения (определение научной области произведения). Определение социальной роли автора текста.
  • Data: синтетические, интернет-коллекция.
  • References: Стрижов, Рудой.
  • Ключевые слова: порождение признаков, поиск изоморфных моделей.
  • Предлагаемый алгоритм: алгоритм последовательного порождения суперпозиций.
  • Basic algorithm: решающие деревья.
  • Проблема: Требуется построить набор признаков, по которым можно классифицировать текст.

12. 2012TypeDetection

  • Name: Методы извлечения признаков из текстовой информации
  • Тизер: Научно ли данное произведение? Определение типа произведения (определение научной области произведения). Определение социальной роли автора текста.
  • Data: синтетические, интернет-коллекция.
  • References: Найти.
  • Ключевые слова: иерархическая кластеризация, structural learning, метрики сходства текстов.
  • Предлагаемый алгоритм.
  • Basic algorithm.
  • Проблема: Требуется построить набор признаков, по которым можно классифицировать текст.

Темы К.В. Воронцова

  • 2012SparceDistribution Статистические критерии однородности and согласия для сильно разреженных дискретных распределений (В.Ц.)

2012LatentModels

  • Name: Проверка адекватности тематической модели.
  • Тизер: Методы выявления некорректной тематической классификации на материалах конференции. Методы построения тематической модели, сходной с заданной. Кластеризация статей, иерархические тематические модели с тематической интерпретируемостью. Иерархическая тематическая кластеризация тезисов.
  • Data: Тексты тезисов конференции Евро-2012, 1862 тезиса.
  • References: по латентным моделям.
  • Ключевые слова: мягкая кластеризация, латентные модели.
  • Предлагаемый алгоритм: hHDP.
  • Basic algorithm: HDP.
  • Проблема: Требуется построить тематическую модель методом кластеризации and проверить корректность текущей классификации текстов. Для этого выполняется (иерархическая) кластеризация текстов, каждому кластеру ставится в соответствие название темы, соответствующее большинству статей из кластера. После построения модели каждая статья проверяется and относится к своей или к чужой теме.

Ссылки

https://mlalgorithms.svn.sourceforge.net/svnroot/mlalgorithms/utilities В SugarSync/remarks находится документ с одной из возможных функций расстояния между текстами.

References:

https://www.sugarsync.com Файлохранилище, где находятся материалы по проекту. Доступ к соответствующей папке предоставлен по адресу электронной почты. Материалы включают публикации по каждой теме.

Публикация работ

Легенда: Редакция >> Подать (оформление для журнала) >> Подано >> Принято (рецензентами) >> Верстка (замечания рецензентов and редактора учтены) >> Опубликовано (вышел номер).

Task name Author Link to the journal The original text of the work Date of application State
Выбор признаков and оптимизация метрики при кластеризации коллекции документов Адуенко А.А., Кузьмин А.А., Strizhov V.V. Известия ТулГу [162] 12.10.2012 Опубликовано
Оценивание вероятностей появления строк в коллекции документов Будников Е.А., Strizhov V.V. Информационные технологии [163] 24.09.2012 Опубликовано
Проверка адекватности тематических моделей коллекции документов Кузьмин А.А., Strizhov V.V. Программная инженерия [164] 17.12.2012 Опубликовано
Алгоритм оптимального расположения названий коллекции документов Адуенко А.А., Strizhov V.V. Программная инженерия [165] 13.11.2012 Опубликовано
Визуализация матрицы парных расстояний между документами Адуенко А.А., Strizhov V.V. Научно-технические ведомости С.-Пб.ПГУ [166] 29.10.2012 Подано
Построение интегрального индикатора качества научных публикаций методами ко-кластеризации Медведникова М.М., Strizhov V.V. Известия ТулГу [167] 15.11.2012 Опубликовано
Совместный выбор объектов and признаков в Taskх многоклассовой классификации коллекции документов Адуенко А.А., Strizhov V.V. Инфокоммуникационные технологии [168] 18.12.2012 Опубликовано
Алгоритм построения логических правил при разметке текстов Иванова А.В., Адуенко А.А., Strizhov V.V. Программная инженерия [169] 24.01.2013 Принято
Построение иерархических тематических моделей коллекции документов Цыганова С.В., Strizhov V.V. Прикладная информатика [170] 27.01.2013 Опубликовано
Выбор признаков при разметке библиографических списков методами структурного обучения Варфоломеева А.А., Strizhov V.V. Научно-технические ведомости С.-Пб.ПГУ [171] 27.01.2013 Отрецензировано
Критерии согласия для разреженных дискретных распределений and их применение в тематическом моделировании Целых В.Р., Воронцов К.В. Машинное обучение and анализ данных [172] 17.12.2012 Опубликовано
Проверка адекватности тематической модели Степан Лобастов [173] Редакция

Список принятых к публикации работ

  • 1. Aduenko A. A., Стрижов В. В. Визуализация матрицы парных расстояний между документами // Научно-технический вестник С.-Пб. ПГУ. Информатика. Телекоммуникации. Управление, 2013, 1 — ?.
  • 2. Aduenko A. A., Кузьмин А. А., Стрижов В. В. Выбор признаков and оптимизация метрики при кластеризации коллекции документов // Известия Тульского государственного университета, Естественные науки, 2012, № 3. С. 119-132.
  • 3. Aduenko A. A., Стрижов В. В. Алгоритм оптимального расположения названий коллекции документов // Программная инженерия, 2013. № 3. С.21-25.
  • 4. Будников Е. А., Стрижов В. В. Оценивание вероятностей появления строк в коллекции документов // Информационные технологии, 2013. № 4.
  • 5. Кузьмин А. А., Strizhov V.V. Проверка адекватности тематических моделей коллекции документов // Программная инженерия, 2013. № 4.
  • 6. Медведникова М. М., Strizhov V.V. Построение интегрального индикатора качества научных публикаций методами ко-кластеризации // Известия Тульского государственного университета, Естественные науки, 2013. №1.
  • 7. Aduenko A. A., Стрижов В. В. Совместный выбор объектов and признаков в Taskх многоклассовой классификации коллекции документов // Инфокоммуникационные технологии, 2013. № 2.
  • 8. Иванова А.В., Aduenko A. A., Стрижов В. В. Алгоритм построения логических правил при разметке текстов // Программная инженерия, 2013. № 4(5).
  • 9. Цыганова С.В., Стрижов В. В. Построение иерархических тематических моделей коллекции документов // Прикладная информатика, 2013. № 1.
  • 10. Варфоломеева А.А., Стрижов В. В. Выбор признаков при разметке библиографических списков методами структурного обучения // Научно-технический вестник С.-Пб. ПГУ. Информатика. Телекоммуникации. Управление, 2013.
  • 11. Целых В.Р., Воронцов К.В. Критерии согласия для разреженных дискретных распределений and их применение в тематическом моделировании // JMLDA, 2012. №4. С. 432-442.

Моя первая публикация с кросс-рецензированием

Список задач

Task name Author Reviewer Link to work Comments
CMARS: аппроксимация сплайнами Влада Целых Татьяна Шпакова Celyh2012CMARS [.]сaipvdstrj(10)
Алгоритмические основы построения банковских скоринговых карт Alexander Aduenko Алина Иванова Aduenko2012economics [.]сaipvdstrj(10)
Использование метода главных компонент при построении интегральных индикаторов Мария Медведникова Светлана Цыганова Medvednikova2012PCA [r]сaipvdstrj(10)
Многоуровневая классификация при обнаружении движения цен Арсентий Кузьмин Анна Варфоломеева Kuzmin2012TimeRows [r]сaipvdstjr(10)
Локальные методы прогнозирования с выбором инвариантного преобразования Светлана Цыганова Мария Медведникова Tsyganova2012 LocalForecast [r]сaipvdstjr(10)
Прогноз квазипериодических многомерных временных рядов непараметрическими методами (пример) Егор Клочков Александр Шульга Klochkov2012Goods4Cast [r]сaipvdstj.(10)
Алгоритмы переборного поиска наиболее информативных объектов and признаков в логистической регрессии (пример) Степан Лобастов Егор Клочков Lobastov2012FOSelection [r]сaipvdstrj(10)
Локальные методы прогнозирования с выбором метрики Анна Варфоломеева Арсентий Кузьмин Varfolomeeva2012 LocForecastMetrics [r]сaipvdstjr(10)
Полиномы Чебышева and прогнозирование временных рядов Валерия Бочкарева Степан Лобастов Bochkareva2012TimeSeriesPrediction [.]сaipvdst-r(9)
Кластеризация and составление словаря аминокислотных последовательностей Татьяна Шпакова Влада Целых Shpakova2012Clustering [.]сaipvdst.(9)
Векторная авторегрессия and управление макроэкономическими показателями Александр Шульга Shulga2012VAR [.]сaipvds..(9)
Аппроксимация эмпирических функций распределения Алина Иванова Alexander Aduenko Ivanova2012 ApproximateFunc [r]сaipvd..(9)

Аннотации

Алгоритмы переборного поиска наиболее информативных объектов and признаков в логистической регрессии

Логистическая регрессия – это статистическая модель, которая применяется для предсказания вероятности возникновения некоторого события по значениям множества признаков. Она находит применение, например, в медицине [174] and кредитном скроллинге. В реальных условиях число признаков обычно велико, and важнейшей задачей является выбор только существенных признаков , а также поиск объектов, которые по тем или иным причинам являются атипичными.

Ключевые слова: logit model, feature selection, boosting.

Использование метода главных компонент при построении интегральных индикаторов

В данной работе рассматривается использование метода главных компонент при построении интегральных индикаторов. Полученные результаты сравниваются с результатами, даваемыми методом расслоения Парето. Строится интегральный индикатор для российских вузов. Для этого используются биографии 30 богатейших бизнесменов России по версии журнала "Forbes" за 2011 год.

Ключевые слова: интегральный индикатор, экспертные оценки, веса параметров, метод главных компонент, метод расслоения Парето.

Аппроксимация эмпирических функций распределения

Работа посвящена методам аппроксимации функций для эффективного вычисления интегралов. В практических Taskх обычно имеются данные в определенных точках времени или пространства. При построении предположений об остальных точках возникает необходимость аппроксимации функции распределения исследуемой величины, а также оценка соответствующей ошибки. Для ее расчета есть возможность использовать методы разной точности.

Ключевые слова: метод Монте-Карло, вычисление функцй распределения, эмпирические функции распределения.

Методы локального прогнозирования с выбором преобразования

Задачи прогнозирования временных рядов имеют множество приложений в различных областях, таких как экономика, физика, медицина. Их решением является прогноз на недалекое будущее по уже известным значениям прогнозируемого ряда в предыдущие моменты времени. В работе будет построен алгоритм локального прогнозирования с учетом преобразований, позволяющий без участия человека выявить визуально похожие участки временного ряда.

Ключевые слова: локальное прогнозирование, преобразование

Черновой список задач

  1. Кластеризация and составление словаря аминокислотных последовательностей
  2. Oblivious decision trees: алгоритм Яндекс для системы Полигон
  3. Сравнительный анализ регрессионных остатков в SVN-регрессии
  4. Алгоритмы нахождения гауссовских смесей
  5. Прогноз квазипериодических многомерных временных рядов непараметрическими методами
  6. Многоуровневая классификация при обнаружении движения цен
  7. CMARS: аппроксимация сплайнами
  8. Полиномы Чебышева and метод прогонки при прогнозировании временных рядов
  9. Сравнение методов ARMA and FLS при ретроспективном прогнозировании
  10. Локальные методы прогнозирования с выбором метрики
  11. Локальные методы прогнозирования с выбором инвариантного преобразования
  12. Алгоритмы переборного поиска наиболее информативных объектов and признаков в логистической регрессии
  13. Векторная авторегрессия and управление макроэкономическими показателями
  14. Построение рейтинга российских вузов по открытым данным об успешности карьеры их выпускников

Ещё задачи

  1. Анализ текста методами структурного обучения
  2. Аппроксимация эмпирических функций распределения
  3. Алгоритмические основы построения банковских скоринговых карт
  4. Сингулярное разложение and поисковая машина
  5. Сравнение алгоритмов многокритериальной оптимизации
  6. Уточнение Expertных оценок на данных в ранговых шкалах (интервальные, конусы, веса Expertов, копулы)
  7. Уточнение Expertных оценок при анализе работы механизма устойчивого развития энергетики
  8. Визуализация пространства параметров регрессионных моделей
  9. Восстановление регрессии методом главных компонент
  10. Оценка гиперпараметров путем сэмплирования
  11. Прореживание существенно нелинейных моделей с помощью гиперпараметров
  12. Фактор Оккама для параметрических моделей с известной областью определения параметров
  13. Создание алгоритмов последовательной модификации моделей
  14. Порождение and выбор моделей классификации

and еще задачи

  • Функция расстояния между формулами and поиск.
  • Поиск объектов (техническая работа).

+

  • Авторегрессия
  • Векторная авторегрессия
  • Экспоненциальное сглаживание
  • Локальные методы, поиск метрики
  • Локальные методы с инвариантами, метрика фиксирована
  • ARIMA
  • Многомерная гусеница, выбор длины гусеницы
  • Многомерная гусеница, выбор рядов
  • Прогнозирование с использованием DTW
  • Скользящее среднее, выбор ядер
  • Скользящее среднее с забыванием истории
  • Скользящее среднее временных рядов с периодической составляющей
  • Прогнозирование нейронными сетями
  • Анализ качества прогноза
  • Метаописание временных рядов
  • Логическое прогнозирование
  • SVN – регрессия
  • Дискретное прогнозирование, музыка.

Составить

  • Список типичных типографических ошибок
  • Список ошибок BibTeX

2011

Публикация в журнале JMLDA

Перед выполнением заданий рекомендуются к прочтению

Задачи

Название задачи Работу выполняет Рецензент Ссылка на работу Комментарии
Оценивание гиперпараметров линейных регрессионных моделей при отборе шумовых and коррелирующих признаков Токмакова Александра Мотренко Анастасия Tokmakova2011HyperPar
Выбор моделей прогнозирования цен на электроэнергию Леонтьева Любовь Гребенников Евгений Leonteva2011ElectricityConsumption
Многоклассовый прогноз вероятности наступления инфаркта and оценка необходимого объема выборки пациентов (пример) Мотренко Анастасия Токмакова Александра Motrenko2011HAPrediction
Алгоритмы порождения существенно-нелинейных моделей Георгий Рудой Николай Балдин Rudoy2012Generation
Событийное моделирование and прогноз финансовых временных рядов Александр Романенко Егор Будников Romanenko2011Event
Обзор некоторых статистических моделей естественного языка Егор Будников Александр Романенко Budnikov2011Statistical

Моя первая публикация в журнале JMLDA

Перед выполнением заданий рекомендуются к прочтению

См. также

Задачи

Название задачи Работу выполняет Работу рецензирует Ссылка на работу Комментарии
Использование теста Гренджера при прогнозировании временных рядов Anastasia Motrenko Любовь Леонтьева Motrenko2011GrangerForc Опубл. в JMLDA
Выбор функции активации при прогнозировании нейронными сетями Георгий Рудой Николай Балдин Rudoy2011NNForecasting Опубл. в JMLDA
Многомерная гусеница, выбор длины and числа компонент гусеницы (пример) Любовь Леонтьева Михаил Бурмистров Leonteva2011GaterpillarLearning Опубл. в JMLDA
Прогнозирование функциями дискретного аргумента (пример) Егор Будников Александр Романенко Budnikov2011DiscreteForecasting Опубл. в JMLDA
Исследование сходимости при прогнозировании нейронными сетями с обратной связью Николай Балдин Георгий Рудой Baldin2011FNNForecasting Опубл. в JMLDA
Выравнивание временных рядов: прогнозирование с использованием DTW Александр Романенко Егор Будников Romanenko2011DTWForecasting Опубл. в JMLDA
Выделение периодической компоненты временного ряда (пример) Александра Токмакова Егор Будников Tokmakova2011Periodic Опубл. в JMLDA

Краткое описание задач

Task 1: Непараметрическое прогнозирование: выбор ядра, настройка параметров

В работе описывается метод ядерного сглаживания временного ряда, как один из видов непараметрической регрессии. Суть метода состоит в восстановлении функции времени, как взвешенной линейной комбинации точек из некоторой окрестности. Непрерывную ограниченную симметричную вещественную весовую функцию называют ядром. Полученная ядерная оценка используется для прогнозирования следующей точки ряда. Исследуется зависимость качества прогнозирования от параметров ядра and наложенного шума.

Task 2: Экспоненциальное сглаживание and прогноз

В работе исследуется применение алгоритма экспоненциального сглаживания к прогнозированию временных рядов. В основе алгоритма лежит учет предыдущих значений ряда с весами, убывающими по мере удаления от исследуемого участка временного ряда. Изучено поведение алгоритма на модельных данных в различных моделях весов. Проведен анализ работы алгоритма на реальных данных -– биржевых индексах.

Task 3: Выделение периодической компоненты временного ряда (пример)

В проекте исследуется временной ряд на наличие периодической компоненты, строится тригонометрическая интерполяция предложенных временных рядов методом наименьших квадратов. Производится оценка параметров функции метода наименьших квадратов в зависимости от качества прогнозирования. В вычислительном эксперименте приводятся результаты работы корреляционной функции and метода наименьших квадратов на зашумлённом модельном синусе and реальном временном ряде электрокардиограммы.

Task 4: Многомерная гусеница, выбор длины and числа компонент гусеницы (сравнение сглаженного and несглаженного временного ряда) (пример)

В работе описывается метод гусеницы and его применение для прогнозирования временных рядов. Алгоритм основан на выделении из изучаемого временного ряда его информативных компонент and последующего построения прогноза. Исследуется зависимость точности прогнозов от выбора длины гусеницы and числа ее компонент. В вычислительном эксперименте приводятся результаты работы алгоритма на периодических рядах с разным рисунком внутри периода, на рядах с нарушением периодичности, а так же на реальных рядах почасовой температуры.

Task 5: Прогнозирование функциями дискретного аргумента (пример)

В работе исследуются короткие временные ряды на примере монофонических музыкальных мелодий. Происходит прогнозирование одной ноты экспоненциальным сглаживанием, локальным методом, а также методом поиска постоянных закономерностей. Вычислительный эксперимент проводится на двух мелодиях, одна из которых имеет точно повторяющиеся фрагменты.

Task 7: Локальные методы прогнозирования,поиск метрики

Временной ряд делится на отдельные участки, каждому из которых сопоставляется точка в n-мерном пространстве признаков. Локальная модель рассчитывается в три последовательных этапа. Первый – находит k-ближайших соседей наблюдаемой точки. Второй – строит простую модель, используя только этих k соседей. Третий – используя данную модель, по наблюдаемой точке прогнозирует следующую. Многие исследователи, используют эвклидову метрику для измерения расстояний между точками. Данная работа призвана сравнить точность прогнозирования при использовании различных метрик. В частности, требуется исследовать оптимальный набор весов во взвешенной метрике для максимизации точности прогнозирования.

Task 8: Локальные методы прогнозирования, поиск инвариантного преобразования

В проекте используются локальные методы прогнозирования временных рядов. В этих методах не находится представления временного ряда в классе заданных функций от времени. Вместо этого прогноз осуществляется на основе данных о каком-то участке временного ряда (используется локальная информация). В данной работе подробно исследован следующий метод (обобщение классического «ближайшего соседа»).

Пусть имеется временной ряд, and стоит Task продолжить его. Предполагается, что такое продолжение определяется предысторией, т.е. в ряде нужно найти часть, которая после некоторого преобразования A становится схожа с той частью, которую мы стремимся прогнозировать. Поиск такого преобразования A and есть цель данного проекта. Для определения степени сходства используется функция B – функция близости двух отрезков временного ряда (подробнее об этом см. здесь). Так мы находим ближайшего соседа к нашей предыстории. В общем случае ищем несколько ближайших соседей. Продолжение запишется в виде их линейной комбинации.

Task 9: Выравнивание временных рядов: прогнозирование с использованием DTW (пример)

Временным рядом называется последовательность упорядоченных по времени значений некоторой вещественной переменной $\mathbf{x}=\{x_{t}\}_{t=1}^T\in\mathbb{R}^T$. Task, сопутствующая появлению временных рядов, - сравнение одной последовательности данных с другой. Сравнение последовательностей существенно упрощается после деформации временного ряда вдоль одной из осей and его выравнивания. Dynamic time warping (DTW) представляет собой технику эффективного выравнивая временных рядов. Методы DTW используются при распознавании речи, при анализе информации в робототехнике, в промышленности, в медицине and других сферах.

Цель работы - привести пример выравнивания, ввести функционал сравнения двух временных рядов, обладающий естественными свойствами коммутативности, рефлексивности and транзитивностина. Функционал должен принимать на вход два временных ряда, а на выходе давать число, характеризующее степень их "похожести".

Task 10: Выбор функции активации при прогнозировании нейронными сетями

Целью проекта является исследование зависимости качества прогнозирования нейронными сетями без обратной связи (одно- and многослойными перцептронами) от выбранной функции активации нейронов в сети, а также от параметров этой функции.

Результатом проекта является оценка качества прогнозирования нейронными сетями в зависимости от типа and параметров функции активации.

Task 12: Исследование сходимости при прогнозировании нейронными сетями с обратной связью

Исследуется зависимость скорости сходимости при прогнозировании временных рядов от параметров нейронной сети с обратной связью. Понятие обратной связи характерно для динамических систем, в которых выходной сигнал некоторого элемента cистемы оказывает влияние на входной сигнал этого элемента. Выходной сигнал можно представить в виде бесконечной взвешенной суммы текущего and предыдущих входных сигналов. В качестве модели нейронной сети используется сеть Джордана. Предлагается исследовать скорость сходимости в зависимости от выбора функции активации (сигмоидной, гиперболического тангенса), от числа нейронов в промежуточном слое and от ширины скользящего окна. Также исследуется способ повышения скорости сходимости при использовании обобщенного дельта-правила.

Task 13: Многомерная гусеница, выбор длины and числа компонент гусеницы (пример)

Работа посвящена исследованию одного из методов анализа многомерных временных рядов - метода "гусеницы", также известного как Singular Spectrum Analysis или SSA. Метод можно разделить на четыре этапа - представление временного ряда в виде матрицы при помощи сдвиговой процедуры, вычисление ковариационной матрицы выборки and сингулярное ее разложение, отбор главных компонент,относящихся к различным составляющим ряда (от медленно меняющихся and периодических до шумовых), и, наконец, восстановление ряда.

Областью применения алгоритма являются задачи как метеорологии and геофизики, так and экономики and медицины. Целью данной работы является выяснение зависимости эффективности алгоритма от выбора временных рядов, используемых в его работе.

Task 14: Использование теста Гренджера при прогнозировании временных рядов

При прогнозировании ряда бывает полезно определить, является ли данный ряд "зависимым" от некоторого другого ряда. Выявить подобную связь помогает тест Грейнджера, основанный на статистических тестах(при этом метод не гарантирует точного результата - при сравнении двух рядов, зависящих от еще одного ряда возможна ошибка). Метод применяется при прогнозировании экономических явлений and явлений природного характера (например, землятрясений).

Цель работы - предложить алгоритм, наилучшим образом использующий данный метод; исследовать эффективность метода в зависимости от прогнозируемых рядов.

Task 15: Прогнозирование and аппроксимация сплайнами

Описание.

Task 16: ARIMA and GARCH при прогнозировании высоковолатильных рядов

Описание.

Task 17: Прогнозирование and SVN–регрессия

Описание.

Доклады and экзамен (возможны уточнения)

  • Доклад-1 6 апреля
  • Контрольная точка 12 мая
  • Экзамен 19 мая
Личные инструменты