Математические методы прогнозирования (кафедра ВМиК МГУ)

Материал из MachineLearning.

(Перенаправлено с ММП)
Перейти к: навигация, поиск
   
Кафедральные курсы
Спецкурсы/спецсеминары
Новости
Расписание
Учебный план
Персональный состав
Материалы
Диссертации/дипломные работы
Просеминар
  Тел. +7-495-939-4202
e-mail: Изображение:MMP_email.jpg
Ученый секретарь: Д.А. Кропотов
Все контакты
О кафедре

Кафедра Математических методов прогнозирования ВМК МГУ создана в 1997 году. Организатор и заведующий кафедрой — лауреат Ленинской премии, академик РАН Юрий Иванович Журавлев. Кафедра готовит специалистов в области распознавания образов, машинного обучения, интеллектуального анализа данных, биоинформатики, анализа изображений и др. Подробнее

Новости
  • 5 апреля 2016 года: Добавлено расписание экзаменов для 417-й группы.
  • 16 марта 2016 года: Открыта регистрация на ежегодную летнюю школу Microsoft Research, которая пройдёт в период с 17 по 24 июля 2016 года в г.Казань. Подача заявок до 18 апреля включительно. Темой этого года станет «Интернет вещей» (Internet of Things). Помимо вводных курсов будет затронут широкий спектр вопросов, от дизайна пользовательского интерфейса и адаптации поведения приложения в зависимости от данных с различных сенсоров до специфики проектирования приложений для работы в условиях ограничений заряда аккумулятора и интерференции беспроводных сигналов. Программа рассчитана на студентов, аспирантов и молодых учёных, и будет включать лекции и семинары исследователей и учёных ведущих университетов и исследовательских организаций со всего мира.
  • 3 февраля 2016 года: Добавлено расписание занятий на весенний семестр.


Все новости

Объявления о курсах
  • 05 мая 2016 года: Учебно-исследовательский семинар «Интеллектуальный анализ данных: новые задачи и методы», рук.: С.И. Гуров, А.И. Майсурадзе проходит по вторникам, начало в 18-05, ауд. 704. 10 мая (вторник) С. В. Илларионова с докладом «Разработка нейрокомпьютерного интерфейса BCI».
    Н. Е. Юдин с докладом «Задача распознавания моргания глаз в BCI». Одной из актуальных на сегодняшний день областей математических исследований является BCI (brain-computer interface). Основная идея данных разработок заключается в создание программного и медицинского обеспечения, позволяющего передавать сигналы с поверхности мозга в компьютер. Приборы для считывания сигналов поступили в продажу несколько лет назад и получили широкое распространение в сфере развлечений. В докладе будет рассказано о реализации алгоритма машинного обучения, использующего в качестве признакового пространства выходы преобразования Фурье и Прони сигналов с Epoc Emotiv, на примере задачи анализа ментального ввода паролей для объектов с ограниченным доступом.
    Построение нейрокомпьютерного интерфейса (англ. BCI) на основе анализа электроэнцефалограммы (ЭЭГ) головного мозга имеет неоспоримые плюсы в виде высокого временного разрешения, то есть высокая производительность, и неинвазивности самого метода. Но чтобы их эффективно использовать, необходимо прежде всего извлечь из сигнала признаки, отвечающие определённым видам мозговой активности. В рамках доклада будет представлен метод распознавания моргания глаз по анализу видео потока, с помощью которого в дальнейшем можно будет извлечь признаки ЭЭГ, отвечающие за моргание глаз.
    Приглашаются все желающие.
  • 22 апреля 2016 года: Учебно-исследовательский семинар «Интеллектуальный анализ данных: новые задачи и методы», рук.: С.И. Гуров, А.И. Майсурадзе проходит по вторникам, начало в 18-05, ауд. 704. 26 апреля (вторник) П. А. Коваленко с докладом «Управление механическим манипулятором посредством нейрокомпьютерного интерфейса».
    Нейрокомпьютерные интерфейсы (Brain-ComputerInterface, BCI) – приборы, позволяющие передавать сигналы от головного мозга к компьютеру напрямую, без использования привычных устройств ввода, таких как мышь и клавиатура. Наиболее распространенным их вариантом являются приборы, считывающие электроэнцефалограмму с поверхности головы. В последнее время появился ряд коммерческих вариантов нейрокомпьютерных интерфейсов, таких как EmotivEpoc (представлен на фотографии ниже), доступных для использования не только лабораториям и медицинским учреждениям, но и рядовым пользователям. Одним из возможных применений нейрокомпьютерного интерфейса является управление механическим устройством, например, механической рукой.
    В докладе будет более подробно рассказано об устройстве нейрокомпьютерных интерфейсов, в частности, EmotivEpoc, и некоторых подходах к работе с ними. Также будут упомянуты некоторые результаты, полученные исследователями в этой области. Приглашаются все желающие.
  • 14 апреля 2016 года: Учебно-исследовательский семинар «Интеллектуальный анализ данных: новые задачи и методы», рук.: С.И. Гуров, А.И. Майсурадзе проходит по вторникам, начало в 18-05, ауд. 704. 19 апреля (вторник) А. Левин с докладом «ПРОДАЖИ В КРУПНОЙ IT КОМПАНИИ».
    Этот доклад будет полезен для тех выпускников, которые хотели бы начать свою карьеру в крупной IT компании. Я поделюсь своим опытом работы в отделе продаж IBM и расскажу об основах продаж, которые важно знать для студентов/выпускников, перед тем как попробовать себя в этом направлении. Также я расскажу о том как представлена компания IBM в России и Мире, какие направления в IT активно развиваются и как начать строить свою карьеру в IBM. Приглашаю всех желающих и охотно отвечу на вопросы!
  • 07 апреля 2016 года: Учебно-исследовательский семинар «Интеллектуальный анализ данных: новые задачи и методы», рук.: С.И. Гуров, А.И. Майсурадзе проходит по вторникам, начало в 18-05, ауд. 704. 12 апреля (вторник) М.И.Сабурова с докладом «Трехдольная модель данных в задачах анализа корпусов текстов».
    В литературе описывается большое число задач, связанных санализом корпусов текстов. Корпусные коллекции представляет собой массив слабоструктурированной информации и сложность автоматизации методов решения задач анализа такой информации состоит в отсутствии очевидных формальных моделей. В докладе будет предложена реляционная трехдольная модель данных и методы получения данных в этой модели.Рассмотрена реализация трехдольной модели с одной функциональной связью для случая «документы-маркеры-рубрики». Исходные данные уже содержат необходимые единицы анализа: тексты, речевые маркеры и рубрики, при этом имеются связи между маркерами и текстами, текстами и рубриками. Задачу восстановления необходимой связи между маркерами и рубриками предлагается решать автоматически, как задачу распределения признаков по классам. Приглашаются все желающие.
  • 31 марта 2016 года: Учебно-исследовательский семинар «Интеллектуальный анализ данных: новые задачи и методы», рук.: С.И. Гуров, А.И. Майсурадзе проходит по вторникам, начало в 18-05, ауд. 704. 05 апреля (вторник) Бурмистров Владимир Васильевич МГТУ им. Н. Э. Баумана, Успенский Вячеслав Максимилианович Центральный Военный Клинический Госпиталь №2 им. П. В. Мандрыка, г. Королев с докладом «Математические возможности оптимизации технологии информационного анализа электрокардиосигналов».
    Анализ сигналов электрокардиограммы находит всё большее применении в медицинской функциональной диагностике. Возможности анализа ЭКГ-сигналов пытаются распространить за рамки кардиологии как в России, так и за рубежом. Уже известны различные способы интегральной оценки состояния организма человека по ЭКГ-сигналам. Разрабатываются и исследуются способы определения функционального состояния различных систем человека, например нервной вегетативной. Недостатком вышеуказанных способов диагностики является то, что они не позволяют провести диагностику заболеваний. Авторы доклада исследуют и развивают способы диагностики по ЭКГ-сигналам разных видов заболеваний в различных органах на любой стадии их развития. Оптимизация технологии анализа состоит как в сокращении времени диагностики, так и в повышении её точности. Пример результата. По анализу ЭКГ-сигналов вынесено верное заключение о наличии у больного ишемической болезни сердца, гипертонической болезни, хронического холецистита, дискинезии желчевыводящих путей, желчнокаменной болезни, мочекаменной болезни, хронического гастродуоденита, хронического колита, хронического простатита с риском формирования аденомы. Исследование длилось 12 минут. С математической точки зрения речь идёт об анализе скрытых устойчивых зависимостей в динамических рядах параметров временных сигналов. Будет освещён новый подход к проблеме сжатия, каталогизации и защиты информации. Приглашаются все желающие. Будут предложены возможные темы курсовых работ, поэтому доклад интересен студентам, интересующимся распределением.
  • 16 марта 2016 года: Учебно-исследовательский семинар «Интеллектуальный анализ данных: новые задачи и методы», рук.: С.И. Гуров, А.И. Майсурадзе проходит по вторникам, начало в 18-05, ауд. 704. 22 марта (вторник) Н.М. Борисов (000 «ПОНКЦ», Pathway Pharmaceuticals Ltd, НИЦ «Курчатовский институт) с докладом «МАТЕМАТИЧЕСКИЕ ОСНОВЫ СИСТЕМНО-БИОИНФОРМАТИЧЕСКОЙ ПЛАТФОРМЫ ONCOFINDER».
    Одна из главных проблем онкологии - индивидуализация подхода к терапии и выбор оптимального для каждого пациента курса лечения. При одинаковой картине появления и развития заболевания, индивидуальная реакция пациентов на проводимые курсы лечения может различаться диаметрально противоположно и если лечить всех пациентов по единой схеме - около трети всех больных обрекаются на смерть только из-за упущенного времени и побочных токсических эффектов. Поэтому подходы к лечению обязательно должны учитывать индивидуальные особенности возникновения и протекания болезни. Системно-биологическая платформа OncoFinder предназначена для анализа активации внутриклеточных сигнальных и метаболических путей, а также для поддержки принятия решений о назначении тех или иных методов лечения индивидуальным пациентам. Приглашаются все желающие,и особенно студенты 2-го курса, определяющиеся с распределением на кафедры.
  • 15 марта 2016 года: Учебно-исследовательский семинар «Интеллектуальный анализ данных: новые задачи и методы», рук.: С.И. Гуров, А.И. Майсурадзе проходит по вторникам, начало в 18-05, ауд. 704. 15 марта (вторник) Панкратов Антон с докладом «Распознавание нумерации на рукописях c помощью нейронных сетей».
    В настоящее время нейронные сети — популярный инструмент машинного обучения, позволяющий автоматически выделять закономерности в данных. Огромное распространение нейронные сети получили в задачах компьютерного зрения после развития технологий глубокого обучения, в частности, появления свёрточных сетей. В докладе рассматриваются основные виды нейронных сетей и способы их обучения. Также предлагается решение задачи по распознаванию номера на отсканированных рукописях. Приглашаются все желающие.
  • 16 февраля 2016 года: Спецкурс "Вероятностное тематическое моделирование", К.В. Воронцов, проходит по пятницам в ауд. 607, начало в 18-00. Первое занятие состоится 19 февраля (пятница). В спецкурсе изучаются методы тематического моделирования (topic modeling) коллекций текстовых документов. Тематические модели предназначены для выявления латентной семантики текстов. Развивается не-байесовский многокритериальный подход к решению некорректно поставленной задачи стохастического матричного разложения — аддитивная регуляризация тематических моделей. Рассматриваются тематические модели для решения прикладных задач разведочного информационного поиска (exploratory search) в коллекциях научных статей и в социальных сетях, задач классификации, категоризации, сегментации и суммаризации текстов естественного языка, задач коллаборативной фильтрации и рекомендательных систем, а также задач анализа и классификации дискре-тизированных биомедицинских сигналов. Особое внимание будет уделено методам дист-рибутивной семантики типа word2vec и комбинированию статистических и лингвистиче-ских методов анализа текстов. Предполагается проведение студентами численных экспе-риментов на модельных и реальных данных, в том числе с использованием параллельной библиотеки с открытым кодом для онлайнового тематического моделирования BigARTM. www.MachineLearning.ru: Вероятностные тематические модели, К.В. Воронцов
  • 15 февраля 2016 года: Учебно-исследовательский семинар «Интеллектуальный анализ данных: новые задачи и методы», рук.: С.И. Гуров, А.И. Майсурадзе проходит по вторникам, начало в 18-05, ауд. 704. 16 февраля (вторник) В.Д. Козлов с докладом «Современные подходы к формализации и решению задачи подбора параметров распределений по выборке».
    Задача восстановления распределения по исходной выборке лежит в основе многих инструментов статистики и фундаментальных задач интеллектуального анализа данных. Наиболее распространённым подходом к формализации таких задач является предложенный ещё в начале ХХ в. метод максимума правдоподобия. Для многих классов распределений этот метод позволяет получить оценки параметров, обладающие многими положительными свойствами, либо в явном виде, либо с использованием относительно простого метода оптимизации. Однако в последнее время возникает всё больше предметных областей, в которых используются сложные семейства распределений. Это приводит к необходимости создания новых подходов к оценке параметров распределений. В докладе рассматриваются классические и новые способы формализации указанной задачи, а также различные методы решения для каждой из формализаций. Приглашаются все желающие.
  • 12 февраля 2016 года: Спецкурс "Методы машинного обучении и поиск достоверных закономерностей в данных" (Machine learning and search of valid regularities in data), лектор Сенько Олег Валентинович, проходит по четвергам, начало в 18-00, ауд. 605. Первое занятие состоится 18 февраля (четверг). В курсе обсуждаются основные проблемы, возникающие при использовании методов обучения по прецедентам (машинного обучения). Даётся краткий обзор существующих методов распознавания и регрессионного анализа. Обсуждаются способы повышения обобщающей способности методов машинного обучения. Приглашаются студенты, магистры и аспиранты.
  • 12 февраля 2016 года: Спецкурс " Метрические методы интеллектуального анализа данных" (Metric Methods of Data Mining) лектор, А.И. Майсурадзе проходит по вторникам, начало в 16-20, ауд. 523. 16 февраля (вторник) Рассматриваются методы и технологии, применяющиеся в интеллектуальном анализе данных (ИАД, data mining) и базирующиеся на понятиях сходства, близости, аналогии. Идея сходства свойственна человеческому мышлению, это породило целый комплекс подходов для всех фундаментальных задач ИАД, среди которых основное внимание в курсе уделено классификации, восстановлению регрессии, кластеризации, восстановлению пропущенных данных. Представлена теоретическая основа для построения, реализации и анализа широкого спектра моделей и методов ИАД. Рассмотрены методы построения и вычисления функций сходства, согласование сходства на различных множествах объектов, синтез новых способов сравнения объектов на базе уже имеющихся. Рассмотрен комплекс технологий, предназначенный для эффективного представления и обработки метрической информации вычислительными системами. Исследуются эвристические модели данных, описывающие исходную информацию об объектах распознавания на основе различных реализаций понятия сходства. Рассматриваются задачи, требующие решения при реализации указанных моделей. Изучаются специальные структуры данных и алгоритмы, позволяющие эффективно настраивать и использовать изучаемые модели. Большую часть спецкурса могут слушать уже второкурсники. Программа курса доступна на сайте http://www.machinelearning.ru. Приглашаются студенты, магистры и аспиранты.
  • 12 февраля 2016 года: Спецкурс "Нестатистический анализ данных" (Non-statistical data mining), лектор В.В.Рязанов, проходит по вторникам, начало в 18-00, в ауд. 505.
    Первая лекция состоится 16 февраля (вторник). В спецкурсе будут рассмотрены проблемы и методы кластерного анализа (подходы и алгоритмы кластеризации с известным и неизвестным числом кластеров, критерии кластеризации, вопросы устойчивости, построение оптимальных решений), дискретные методы для решения задач классификации множествами алгоритмов, новые подходы и алгоритмы в регрессионном анализе и анализе данных (решение задач восстановления зависимостей на основе решения задач классификации). Будут рассмотрены практические задачи классификации и поиска зависимостей по прецедентам, применения в медицине, бизнесе и технике. Приглашаются студенты, магистры и аспиранты.
  • 12 февраля 2016 года: Спецкурс "Задачи и алгоритмы вычислительной геометрии" (Computational Geometry: Problems and Algorithms), лектор Л.М. Местецкий, проходит по вторникам в ауд. 510, начало в 18-00. Первое занятие состоится 16 февраля (вторник).
    Эффективные алгоритмы работы с геометрической информацией являются непременным атрибутом всех современных систем машинного зрения, анализа и распознавания изображений, компьютерной графики и геоинформатики. Геометрические алгоритмы предоставляют хорошее поле для развития алгоритмического мышления, необходимого в прикладной математике. В первой части спецкурса будут рассмотрены классические темы вычислительной геометрии: геометрический поиск, выпуклые оболочки, пересечение и близость объектов, диаграммы Вороного, триангуляции Делоне. Вторая часть курса посвящена скелетам, обобщениям диаграмм Вороного для многоугольников и задачам медиального анализа формы изображений. Приглашаются студенты, магистры и аспиранты.
  • 12 февраля 2016 года: Спецкурс "Математические методы анализа текстов" (Mathematical methods of text analysis), лектор Китов Виктор Владимирович, проходит по четвергам в ауд. 510, начало в 18-00.
    Первое занятие состоится 25 февраля (четверг). В курсе даются математические подходы к автоматическому анализу и извлечению информации из текстов. Изучается обработка и парсинг текста:
    • на уровне слов (определение морфологических характеристик, частей речи)
    • на уровне предложений (определение субъекта, объекта, действия, дополнений)
    • на уровне фрагмента текста (определение именованных сущностей)
    • на уровне коллекции документов (извлечение основных тем, представленных в коллекции).
Далее изученные методы обработки текстов используются для классификации текстов по категориям, эффективной визуализации содержимого больших текстовых коллекций, извлечения фактов из текстов для наполнения баз данных фактов, представленных онтологиями.
Спецкурс предполагает знание теории вероятностей, линейной алгебры, математического анализа и основ машинного обучения. В качестве основных инструментов работы с текстами будет использоваться язык программирования Python с научными библиотеками, модуль по обработке текстов NLTK, а также публично доступная онтология WordNet. Приглашаются студенты, магистры и аспиранты.

Все объявления

Сотрудники

Весь персональный состав

Ссылки
   
Кафедральные курсы в текущем семестре

Третий курс

Четвёртый курс

Магистры, 1-й год обучения

Все кафедральные курсы

Спецкурсы в текущем семестре
  • Методы машинного обучения и поиск закономерностей в данных, О.В. Сенько, проходит по четвергам в ауд. 605, начало в 18-00. Первое занятие 18 февраля.
  • Задачи и алгоритмы вычислительной геометрии, Л.М. Местецкий, проходит по вторникам в ауд. 510, начало в 18-00. Первое занятие 16 февраля.
  • Нестатистический анализ данных, В.В. Рязанов, проходит по вторникам в ауд. 505, начало в 18-00. Первое занятие 16 февраля.

Все спецкурсы

Спецсеминары в текущем семестре
  • Учебно-научный семинар «Интеллектуальный анализ данных: новые задачи и методы», С.И.Гуров, А.И.Майсурадзе, проходит по вторникам в ауд. 704, начало в 18-05. Первое занятие 16 февраля.

Все спецсеминары

Материалы

Рекомендации

Файлы

  • mmp-fish-kurs — образцы оформления курсовых работ в MS Word и LaTeX.
  • Программа вступительного экзамена в аспирантуру по философии.
  • Программа вступительного экзамена в аспирантуру по математике (основная часть + дополнение для специальности 01.01.09).
  • Программа кандидатского минимума по специальности 01.01.09.

Все материалы


Все подстраницы:

Математические методы прогнозирования (кафедра ВМиК МГУ)/Дипломные работыМатематические методы прогнозирования (кафедра ВМиК МГУ)/Доска объявленийМатематические методы прогнозирования (кафедра ВМиК МГУ)/Кафедральные курсы
Математические методы прогнозирования (кафедра ВМиК МГУ)/МатериалыМатематические методы прогнозирования (кафедра ВМиК МГУ)/Новый дизайнМатематические методы прогнозирования (кафедра ВМиК МГУ)/О кафедре
Математические методы прогнозирования (кафедра ВМиК МГУ)/Персональный составМатематические методы прогнозирования (кафедра ВМиК МГУ)/ПросеминарМатематические методы прогнозирования (кафедра ВМиК МГУ)/Расписание
Математические методы прогнозирования (кафедра ВМиК МГУ)/Спецкурсы-спецсеминарыМатематические методы прогнозирования (кафедра ВМиК МГУ)/Старый дизайнМатематические методы прогнозирования (кафедра ВМиК МГУ)/Учебный план
Личные инструменты