Машинное обучение (курс лекций, К.В.Воронцов)

Материал из MachineLearning.

Перейти к: навигация, поиск

Содержание

Теория обучения машин (machine learning, машинное обучение) находится на стыке прикладной статистики, численных методов оптимизации, дискретного анализа, и за последние 50 лет оформилась в самостоятельную математическую дисциплину. Методы машинного обучения составляют основу ещё более молодой дисциплины — интеллектуального анализа данных (data mining).

В курсе рассматриваются основные задачи обучения по прецедентам: классификация, кластеризация, регрессия, понижение размерности. Изучаются методы их решения, как классические, так и новые, созданные за последние 10–15 лет. Упор делается на глубокое понимание математических основ, взаимосвязей, достоинств и ограничений рассматриваемых методов. Отдельные теоремы приводятся с доказательствами.

Все методы излагаются по единой схеме:

  • исходные идеи и эвристики;
  • их формализация и математическая теория;
  • описание алгоритма в виде слабо формализованного псевдокода;
  • анализ достоинств, недостатков и границ применимости;
  • пути устранения недостатков;
  • сравнение с другими методами.
  • примеры прикладных задач.

Данный курс расширяет и углубляет набор тем, рекомендованный международным стандартом ACM/IEEE Computing Curricula 2001 по дисциплине «Машинное обучение и нейронные сети» (machine learning and neural networks) в разделе «Интеллектуальные системы» (intelligent systems).

Курс читается

На материал данного курса опираются последующие кафедральные курсы.

От студентов требуются знания курсов линейной алгебры, математического анализа, теории вероятностей. Знание математической статистики, методов оптимизации и какого-либо языка программирования желательно, но не обязательно.

Ниже представлена расширенная программа — в полном объёме она занимает больше, чем могут вместить в себя два семестра. Каждый параграф приблизительно соответствует одной лекции. Курсивом выделен дополнительный материал, который может разбираться на семинарах.

Замечания для студентов

  • Видеолекции ШАД Яндекс.
  • «Введение в машинное обучение» на Курсэре содержит примерно втрое меньше материала, чем в годовом курсе, представленном на этой странице. Там очень многое упрощено, спрятано, пропущено. Действительно введение.
  • На подстранице имеется перечень вопросов к устному экзамену. Очень помогает при подготовке к устному экзамену!
  • О найденных ошибках и опечатках сообщайте мне. — К.В.Воронцов 18:24, 19 января 2009 (MSK)
  • Материал, который есть в pdf-тексте, но не рассказывался на лекциях, обычно не входит в программу экзамена.

Первый семестр

Текст лекций: (PDF, 3 МБ) — обновление 4.10.2011.

Основные понятия и примеры прикладных задач

Презентация: (PDF, 1,4 МБ) — обновление 09.02.2018.

Метрические методы классификации и регрессии

Презентация: (PDF, 3,0 МБ) — обновление 21.02.2017.

Логические методы классификации

Текст лекций: (PDF, 625 КБ).
Презентация: (PDF, 1.8 МБ) — обновление 21.02.2017.

Факультатив

  • Статистический критерий информативности, точный тест Фишера. Сравнение областей эвристических и статистических закономерностей. Асимптотическая эквивалентность статистического и энтропийного критерия информативности. Разнообразие критериев информативности в (p,n)-пространстве.
  • Решающий пень. Бинаризация признаков. Алгоритм разбиения области значений признака на информативные зоны.
  • Решающий список. Жадный алгоритм синтеза списка.
  • Преобразование решающего дерева в решающий список.

Градиентные методы обучения

Презентация: (PDF, 0,9 МБ) — обновление 03.03.2017.

Метод опорных векторов

Презентация: (PDF, 1,1 МБ) — обновление 07.03.2017.

  • Оптимальная разделяющая гиперплоскость. Понятие зазора между классами (margin).
  • Случаи линейной разделимости и отсутствия линейной разделимости. Связь с минимизацией регуляризованного эмпирического риска. Кусочно-линейная функция потерь.
  • Задача квадратичного программирования и двойственная задача. Понятие опорных векторов.
  • Рекомендации по выбору константы C.
  • Функция ядра (kernel functions), спрямляющее пространство, теорема Мерсера.
  • Способы конструктивного построения ядер. Примеры ядер.
  • SVM-регрессия.
  • Регуляризации для отбора признаков: LASSO SVM, Elastic Net SVM, SFM, RFM.
  • Метод релевантных векторов RVM

Многомерная линейная регрессия

Презентация: (PDF, 0,7 MБ) — обновление 14.03.2017.

Нелинейная регрессия

Презентация: (PDF, 0,7 MБ) — обновление 28.03.2017.

Критерии выбора моделей и методы отбора признаков

Текст лекций: (PDF, 330 КБ).
Презентация: (PDF, 1,0 МБ) — обновление 05.03.2015.
Презентация: (PDF, 1,3 МБ) — обновление 28.03.2017.

Прогнозирование временных рядов

Презентация: (PDF, 0,9 MБ) — обновление 27.04.2017.

Байесовская теория классификации

Презентация: (PDF, 1,1 МБ) — обновление 27.04.2017.

Разделение смеси распределений

Презентация: (PDF, 1,7 МБ) — обновление 27.04.2017.

  • Смесь распределений.
  • EM-алгоритм: основная идея, понятие скрытых переменных. ЕМ алгоритм как метод простых итераций для решения системы нелинейных уравнений.
  • Детали реализации EM-алгоритма. Критерий останова. Выбор начального приближения.
  • Выбор числа компонентов смеси. Пошаговая стратегия. Априорное распределение Дирихле.
  • Обобщённый EM-алгоритм. Стохастический EM-алгоритм. Иерархический EM-алгоритм.
  • Смесь многомерных нормальных распределений. Сеть радиальных базисных функций (RBF) и применение EM-алгоритма для её настройки.
  • Сопоставление RBF-сети и SVM с гауссовским ядром.
  • Задача кластеризации. EM-алгоритм и Алгоритм k средних (k-means).
  • Задача частичного обучения.

Кластеризация и частичное обучение

Презентация: (PDF, 1,7 МБ) — обновление 25.05.2017.

Поиск ассоциативных правил

Презентация: (PDF, 1.1 МБ) — обновление 20.10.2015.

  • Понятие ассоциативного правила и его связь с понятием логической закономерности.
  • Примеры прикладных задач: анализ рыночных корзин, выделение терминов и тематики текстов.
  • Алгоритм APriori. Два этапа: поиск частых наборов и рекурсивное порождение ассоциативных правил. Недостатки и пути усовершенствования алгоритма APriori.
  • Алгоритм FP-growth. Понятия FP-дерева и условного FP-дерева. Два этапа поиска частых наборов в FP-growth: построение FP-дерева и рекурсивное порождение частых наборов.
  • Общее представление о динамических и иерархических методах поиска ассоциативных правил.

Второй семестр

Нейронные сети

Презентация: (PDF, 1,4 МБ) — обновление 13.10.2015.

Нейронные сети глубокого обучения

Презентация: (PDF, 3,4 МБ) — обновление 1.11.2017.

  • Быстрые методы стохастического градиента: Поляка, Нестерова, AdaGrad, RMSProp, AdaDelta, Adam, Nadam.
  • Проблема взрыва градиента и эвристика gradient clipping
  • Метод случайных отключений нейронов (Dropout). Интерпретации Dropout. Обратный Dropout и L2-регуляризация.
  • Функции активации ReLU и PReLU.
  • Свёрточные нейронные сети (CNN). Свёрточный нейрон. Pooling нейрон. Выборка размеченных изображений ImageNet.
  • Идея обобщения CNN на любые структурированные данные.
  • Рекуррентные нейронные сети (RNN). Обучение рекуррентных сетей: Backpropagation Through Time (BPTT).
  • Сети долгой кратковременной памяти (Long short-term memory, LSTM)

Линейные композиции, бустинг

Текст лекций: (PDF, 1 MБ).
Презентация: (PDF, 0.9 МБ) — обновление 08.09.2015.

Эвристические, стохастические, нелинейные композиции

Презентация: (PDF, 0.9 МБ) — обновление 08.09.2015.

  • Стохастические методы: бэггинг и метод случайных подпространств.
  • Случайный лес. Анализ смещения и вариации для простого голосования.
  • Смесь алгоритмов (квазилинейная композиция), область компетентности, примеры функций компетентности.
  • Выпуклые функции потерь. Методы построения смесей: последовательный и иерархический.
  • Построение смеси алгоритмов с помощью EM-подобного алгоритма.
  • Нелинейная монотонная корректирующая операция. Случай классификации. Случай регрессии. Задача монотонизации выборки, изотонная регрессия.

Ранжирование

Презентация: (PDF, 0,5 МБ) — обновление 14.10.2014.

  • Постановка задачи обучения ранжированию. Примеры.
  • Признаки в задаче ранжирования поисковой выдачи: текстовые, ссылочные, кликовые. TF-IDF. PageRank.
  • Критерии качества ранжирования: Precision, MAP, AUC, DCG, NDCG, pFound.
  • Ранговая классификация, OC-SVM.
  • Попарный подход: RankingSVM, RankNet, LambdaRank.

Рекомендательные системы

Презентация: (PDF, 0.8 МБ) — обновление 13.11.2016.

  • Задачи коллаборативной фильтрации, транзакционные данные и матрица субъекты—объекты.
  • Корреляционные методы user-based, item-based. Задача восстановления пропущенных значений. Меры сходства субъектов и объектов.
  • Латентные методы на основе би-кластеризации. Алгоритм Брегмана.
  • Латентные методы на основе матричных разложений. Метод главных компонент для разреженных данных (LFM, Latent Factor Model). Метод стохастического градиента.
  • Неотрицательные матричные разложения. Метод чередующихся наименьших квадратов ALS.
  • Модель с учётом неявной информации (implicit feedback).
  • Рекомендации с учётом дополнительных признаковых данных. Линейная и квадратичная регрессионные модели, libFM.
  • Измерение качества рекомендаций. Меры разнообразия (diversity), новизны (novelty), покрытия (coverage), догадливости (serendipity).

Тематическое моделирование

Текст лекций: (PDF, 830 КБ).
Презентация: (PDF, 1.6 МБ) — обновление 1.11.2017.

Обучение с подкреплением

Презентация: (PDF, 1.0 МБ) — обновление 1.11.2017.

  • Задача о многоруком бандите. Жадные и эпсилон-жадные стратегии. Метод UCB (upper confidence bound). Стратегия Softmax.
  • Среда для экспериментов.
  • Адаптивные стратегии на основе скользящих средних. Метод сравнения с подкреплением. Метод преследования.
  • Постановка задачи в случае, когда агент влияет на среду. Ценность состояния среды. Ценность действия.
  • Жадные стратегии максимизации ценности. Уравнения оптимальности Беллмана.
  • Метод временных разностей TD. Метод Q-обучения.
  • Градиентная оптимизация стратегии (policy gradient). Связь с максимизацией log-правдоподобия.
  • Постановка задачи при наличии информации о среде в случае выбора действия. Контекстный многорукий бандит.
  • Линейная регрессионная модель с верхней доверительной оценкой LinUCB.
  • Оценивание новой стратегии по большим историческим данным.

Активное обучение

Презентация: (PDF, 1.2 МБ) — обновление 1.11.2017.

  • Постановка задачи машинного обучения. Основные стратегии: отбор объектов из выборки и из потока, синтез объектов.
  • Сэмплирование по неуверенности. Почему активное обучение быстрее пассивного.
  • Сэмплирование по несогласию в комитете. Сокращение пространства решений.
  • Сэмплирование по ожидаемому изменению модели.
  • Сэмплирование по ожидаемому сокращению ошибки.
  • Синтез объектов по критерию сокращения дисперсии.
  • Взвешивание по плотности.
  • Оценивание качества активного обучения.
  • Введение изучающих действий в стратегию активного обучении. Алгоритмы ε-active и EG-active.
  • Применение обучения с подкреплением для активного обучения. Активное томпсоновское сэмплирование.

См. также

Литература

  1. Hastie T., Tibshirani R., Friedman J. The Elements of Statistical Learning. Springer, 2014. — 739 p.
  2. Bishop C. M. Pattern Recognition and Machine Learning. — Springer, 2006. — 738 p.
  3. Мерков А. Б. Распознавание образов. Введение в методы статистического обучения. 2011. 256 с.
  4. Мерков А. Б. Распознавание образов. Построение и обучение вероятностных моделей. 2014. 238 с.
  5. Коэльо Л.П., Ричарт В. Построение систем машинного обучения на языке Python. 2016. 302 с.

Список подстраниц

Машинное обучение (курс лекций, К.В.Воронцов)/2009Машинное обучение (курс лекций, К.В.Воронцов)/ToDoМашинное обучение (курс лекций, К.В.Воронцов)/Вопросы
Машинное обучение (курс лекций, К.В.Воронцов)/Форма отчета
Личные инструменты